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Abstract 

Conventional procedure and type definition mechanisms are not sufficiently 

powerful to express many programming abstractions that can be captured 

by syntactic transformations. Unfortunately, conventional macroprocessing is 

oblivious to the semantics of the base language, resulting in scoping anomalies, 

poor handling of static semantic errors, and an inability to perform transforma­

tions dependent on semantic attributes of the manipulated program. We intro­

duce a new mechanism, semantic macros, which permit such transformations a 

significant level of access to the static semantic properties of the program frag­

ments they manipulate. In this way, new static semantic processing, including 

compilation of embedded languages with a rich static semantics of their own, 

can be incorporated into user-defined language extensions. A proof-of-concept 

language, XL, is described which embodies this mechanism. 
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1 Introduction 

Nearly every programming language provides a limited procedural abstraction fa­

cility in the form of user-defined subroutines. Most modern languages provide for 

user-defined data types as well. Yet these definitional mechanisms are too weak 

to admit many kinds of definitions analogous to the built-in language constructs, 

such as new declarative forms and control structures. This report proposes that 

this situation be remedied by allowing the user access to the same mechanism used 

by the language translator: computation over the syntactic domain of the language 

at translation time. We propose, however, that such a mechanism be embedded in 

the language as a part of the language itself, not an add-on implemented by the 

extralinguistic expedient of translator modification. 

In Section 2, we critique the existing definitional facilities found in the so called 

"data abstraction languages," observing that they fail to support the full range of 

definitions legitimately called data abstractions, as well as ignoring most forms of 

control abstraction. Section 3 proposes a response, in broad terms, to these short­

comings. These ideas are developed further in Section 4, in which the requirements 

for an improved definitional facility are explored. Section 5 takes a brief look at 

Lisp, whose macro facility comes closest in current practice to satisfying our re­

quirements. By examining the shortcomings of Lisp, we are led in Section 6 to 

a new formulation of a macro-like definitional mechanism in which static seman­

tics play a central role. Section 7, the main body of this document, describes in 

detail the language XL, an experimental language designed to explore the notion 

of semantically-sensitive macroprocessing. In Section'S we present four illustrative 

and non-trivial examples of semantic macros in use. Section 9 examines some of 

the choices made in the design of XL, pointing out alternative approaches worthy 

of further investigation. Section 10 briefly describes the prototype implementation 

of XL. The report concludes with a comparision of XL with related work, issues for 

future research, and conclusions, in Sections 11, 12, and 13. 

2 What is wrong with conventional ADTs 

While promising to support abstractions of a more general nature than might be 

classified as data abstractions, our work is motivated historically by several deficien­

cies we observed in languages that claimed to support extension via user-defined 

abstract data types (ADTs). It seemed that the previous round of research in 

so-called "data abstraction languages" [15][23] had left some unfinished business: 

1. Heterogeneous (record-like) type constructors cannot be defined. Particular 

types with a fixed set of fields of fixed name and type can be expressed, but 
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there is no way to capture the commonality among all such types. Nothing 

akin to the Pascal record ... end construct, which abstracts and encapsulates 

the very notion of "recordness," is expressible in terms of the definitional fa­

cilities provided. Such abstractions are parameterized with respect to entities 

that are not normally manipulable in data abstraction languages, e.g. field 

labels. 

2. Operations on instances of ADTs are restricted to procedures and functions. 

Declarative forms and control structures specific to a user-defined type cannot 

be expressed.1 We might want, for example, a special binding form that wraps 

initialization and finalization actions around its body or a type consisting of 

Prolog-like terms with a pattern-matching control structure. 

3. Parameterization of ADTs consists of filling in holes in a "canned" code tem­

plate. The programmer cannot express more complex transformations, in­

cluding processing of complex literal representations such as algebraic terms 

in a symbolic algebra system, or selecting from among widely differing imple­

mentation strategies depending on the parameter values. 

4. Control abstractions uncoupled to any specific data type are not supported. 

Useful examples include finite state recognizers, finite state transducers, deci­

sion tables, and parsers. Such abstractions are conveniently packaged in "lit­

tle languages," implemented conventionally with preprocessors at the expense 

of smooth integration and security. Examples of such preprocessors include 

YACC [10], LEX [14]. By providing the functionality of these programs as 

language extensions, we can provide for cleaner handling of errors. 

From these considerations, the following general properties of a more powerful 

definitional facility emerge: 

L The computational domain of abstraction definitions must include the ( ab­

stract) syntactic domain of the base language, as types, record field names, 

procedure formal parameters, etc. must be manipulated, but do not have 

values in the object-level (run-time) domain. 

2. ADT operations may possess any syntactic class, i.e. they may compute 

(meta)values of any (meta)type in the syntactic domain, and furthermore 

may accept arguments of any such class. The term syntactic domain is in­

tended to include what is usually referred to as static semantics as well as 

more patently structural properties. 

1 An exception: CLU and Alphard permit the definition of type-specific iteration schemes using 

the built-in concept of an iterator or generator. In our work, such a mechanism can be defined in 

the language, as will be demonstrated in the sequel. 
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3. The definition of an abstraction is not a code template, but a procedure 

expressing what the language processor must do in order to translate its in­

stances. 

Note that we have taken an explicitly translation-oriented view of the semantics 

of abstraction mechanisms and of programming languages in general. We have 

taken this position for philosophical reasons as well as pragmatic ones. The main 

philosophical justification is that we view an abstraction mechanism as impo3ing an 

interpretation on constructs of the base language (and ultimately the machine itself) 

rather than implementing an abstraction in the sense of simulating or executing it. 

In this view, abstraction is something imposed on the run-time world from the 

outside, and is not a part of it. Somewhat more pragmatically, it should be clear 

what constraint checking (e.g. type-checking) goes on at translation time, i.e. at 

some designated time before the input data to the program is known, and at run 

time, i.e. when the input is known. This aids reasoning about the program, including 

both its static well-formedness and its performance at execution time. Finally, an 

interpreter may be constructed trivially by composing the translator with the target 

processor, while the reverse construction requires a partial evaluator which must rely 

on complex analyses that are not decidable in the general case. 

Program abstractions may in general involve well-formedness predicates taking 

global program structure into account, or involve programming idioms or conven­

tions impacting textually distant regions of the program. We restrict our atten­

tion to the class of abstractions that can be encapsulated in the form of language 

constructs, in which an instance of an abstraction can be identified with a set of 

occurrences of syntactic forms from a set of such forms constituting the definition 

of the abstraction. 

3 Embedded metaprogramming facilities 

A programming language is an abstraction of the underlying machine, which must 

ultimately engender any effect of a program on the physical world. Such abstraction 

serves multiple purposes, facilitating the programming process itself as well as sup­

pressing irrelevant machine-dependent detail that would hinder program portability. 

As a program is expressed in a language even at the lowest levels of programming 

(machine language), it is appropriate to view the abstraction provided by a pro­

gramming language as a metalinguistic one, i.e. a linguistic abstraction of another 

language. 
Metaprogramming, or "programming about programs" is an old and recurring 

theme in computer science. Any language processor, whether as simple as a macro­

generator or as complex as a compiler, is a metaprogram. Traditionally, however, 
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programs have had little to say about themselves. A compiler may compile programs 

written in the same language as the compiler, but it is unlikely that the program 

being compiled directs the compilation in other than the most passive way. 

Brian Smith [24] has proposed a new programming mechanism, reflection, in 

which a program can take control over the selfsame interprete~ under which it 

executes and direct its own interpretation. Reflection is a kind of self-reference, 

but unlike recursion, which is "flat," i.e. constrained to the object domain, reflec­

tion can shift levels into the definitional (meta) domain and manipulate explicit 

representations of computational notions that are left implicit at the object level, 

e.g. environments and continuations. The essential trick in reflection is to embed a 

model of the language in itself, and then provide a level-shifting mechanism whereby 

code appearing textually at the object level can be "lifted" so as to take effect in 

the context of the processor. Reflection is an extremely powerful definitional mech­

anism, admitting any extension expressible in terms of the embedded model. In 

Smith's 3-Lisp implementation, the model is a continuation-passing interpreter for 

the full dynamic semantics of 3-Lisp. 

The difficulty with reflection is that it is perhaps too powerful, at least to ad­

mit an efficient implementation. Friedman and Wand [6] suggest that macros, for 

example, those in Lisp, constitute a form of compile-time reflection. By restricting 

reflection to the static properties of a program only, we can "compile away" the 

overhead of maintaining an explicit and effective semantic model. Unfortunately, 

the only static property of a Lisp program made explicit by the Lisp model is the 

interpretation of an expression in terms of another Lisp expression. Indeed, few 

static properties of Lisp programs are incorporated into the semantics of the lan­

guage itself, though many interesting properties of particular programs might be 

statically inferred. In this research, we investigate a static mechanism analogous to 

reflection in the context of a language with non-trivial static semantics, where such 

a restricted form of reflection would nonetheless be useful. 

We propose a class of definitional mechanisms, which we shall term embedded 

metaprogramming facilities, permitting the extension of the static semantics of a 

base language in terms of an embedded and procedural model of its static semantics. 

By embedded, we mean that the definitional mechanism, including the model, is 

a part of the language. By procedural, we mean to emphasize that we are to be 

programming computations over a domain including the program itself, not making 

declarative statements or assertions about its properties. 

Why should a metaprogramming facility be included in a language? Why 

couldn't it be added through some extralingual mechanism such as a preproces­

sor or another component of an integrated programming environment? We can 

think of several reasons: 
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1. Conceptually, the proposed metalinguistic abstraction mechanism is intended 

to complement existing procedure and type definition facilities. Though the 

abstractions it defines may require reference to meta-level concepts in their 

implementations, in use, they play a role identical to that of other abstractions. 

In particular, the operations on an ADT may include language extensions such 

as special declarative or control forms, and we would like to export them from 

the type manager in the same way as ordinary procedures. 

2. The metaprogramming facility must "understand" the base language, in at 

least a superficial sense. By this we mean that the semantic model for the base 

language provides a primitive set of concepts, represented by data types and 

operations, through which extensions interface to the base language. Inasmuch 

as the semantic model is necessarily language specific, so is at least a large 

part of the extension mechanism. We note that conventional macro facilities, 

as well as the structural macros of Lisp and so-called syntax macros, achieve 

a degree of language independence through an impoverished view of the base 

language. We wish to enrich this view as far as is practical, resulting in 

stronger language dependencies. 

3. Extralingual facilities are likely to be nonstandard. If programmers are to 

regard metalinguistic abstraction in the same way as ordinary procedural and 

data abstraction, they must be able to rely on a consistent treatment across 

all implementations. Programmers may justifiably avoid availing themselves 

of nonstandard language features that may decrease code portability. 

At this point, we should add that we are not averse to environmental support, 

but insist that metalinguistic definitional mechanisms should not be distinguished 

in this way from other more pedestrian ones. We can conceive of a programming 

environment where the notion of "language" hardly exists, having been subsumed 

into user interface and presentation. In such a context, it would be appropriate to 

abandon our insistence on metaprogramming facilities as a part of the programming 

languages they enrich. 

4 Toward a metaprogramming facility 

In this section we present a high-level recipe for adding an embedded metapro­

gramming facility to a programming language. As we shall see, there are pragmatic 

reasons why some languages are more suitable for tlus than others, though, in prin­

ciple, the recipe is generally applicable. 
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• Embed a model of translation for the language in the language. ·In the crudest 

terms, write a compiler for the language in the chosen metalanguage, perhaps 

the same language it compiles. The model may be idealized in various ways, 

in that it need not reflect the actual details of the "real" compiler to the extent 

that these may be suppressed without compromising needed expressive power. 

In particular, we may choose to make the target language the same as the 

source language so as to suppress the details of compilation into a lower-level 

language. 

• Provide a "hook" into the compiler, i.e. a mechanism by which the user can 

declare a new syntactic form and provide a fragment of code that drives the 

translation of its instances. This includes static semantics and the gener­

ation of a (dynamic-) semantically equivalent program fragment ultimately 

expressible in terms of built-in primitives. 

Note that static semantics is defined here operationally as "what the translator 

does." The static semantics of the translated program are reinterpreted as the 

dynamic semantics of the translator. · 

Crucial to the whole enterprise is the translation model, which becomes part of 

the advertised interface to the translator, i.e. a part of the language. This is what we 

mean by the term "embedded." As such, the model must be reasonably abstract, 

sufficiently so to serve as a perspicuous definition of the language's static semantics, 

or at least those parts constituting the unchangeable primitive basis upon which 

definitions must be built. This leads to the following observations: 

1. The object language must be factorable into largely independently definable 

constructs with well-defined static interdependencies. The "meat" of the se­

mantics must go into the definitions, as the model can provide little more 

than the "glue" to hold the definitions together without becoming both com­

plicated and overcommitted. For example, the eval function serves as an 

adequate model for Lisp in this regard. 

2. The metalanguage should permit the expression of definitions that are suffi­

ciently declarative to serve as an acceptable means of specification while ad­

mitting an acceptably efficient imperative reading. Symbol processing tasks 

involving linked structures or terms must be adequately supported. Experi­

ence suggests that this implies that the metalanguage processor should imple­

ment a retention-oriented storage management policy with automatic garbage 

collection. 

With regard to point (1), we shall later present a syntax-directed translation 

scheme, a simplification of attribute grammars, in which this constraint manifests 
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itself in the requirement that (a) every instance of a given syntactic class (phylum) is 

constrained to play an equivalent role in static analysis, and (b) all translation-time 

information flow must mirror the syntactic structure of the program. 

With regard to point (2), we observe that these two requirements are diametri­

cally opposed, thus a compromise is necessary. Languages such as Lisp, ML, and 

Prolog appear to have made this compromise in a manner satisfactory for our pur­

poses. Languages such as Pascal, C, and Algol choose to emphasize an efficient 

imperative interpretation at the expense of declarative force. While the object lan­

guage and metalanguage may coincide (as they do in our work), it should be clear 

that this choice is feasible only for an object language of fairly high level. 

Of even greater concern is the necessity to ensure some degree of harmonious co­

operation between separately defined abstractions. Our approach is limited merely 

to erecting abstraction barriers that limit the degree of interaction possible. The 

compilation model must then present a rather restricted view of the compilation 

process in which the abstraction mechanism itself is protected from corruption (e.g. 

protecting the integrity of type-checking) while providing a useful degree of exten­

sibility. It is this area in which the most sensitive engineering issues a:rise, and that 

leaves open the greatest research opportunities. 

5 Lisp and computational macros 

Before proceeding with the specifics of our proposal, it is instructive to examine 

the language Lisp, which serves as both the best example of the ideas discussed 

here in an existing and well-known programming language, and as the inspiration 

and point of departure for this work. In many ways, Lisp seems ideally suited for 

embedded metaprogramming: 

1. Lisp programs are directly and meaningfully represented as Lisp data struc­

tures. As a consequence, metastructural access is trivial in Lisp. The macro fa­

cility provides a hook into the language processor through which user-supplied 

code can take control of the compilation process. 

2. Lisp admits a simple, perspicuous model of its own semantics, in the form 

of the eval function, which is both declaratively significant and suitable for 

execution. From eval, a simple model of Lisp translation suitable for extension 

purposes can be derived. 2 

2 Readers familiar with large, feature-laden Lisp dialects such as ZetaJ.,isp [17] and Common Lisp 

[27] may doubt the truth of this. Given that the model need not be complete, but merely sufficient to 

support extension, we believe the claim is true even of these dialects. Nonetheless, the claim might 

be more accurately made of Scheme [21], a Lisp dialect whose design has placed a much higher value 
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3. Lisp is well-suited to the symbol-manipulation tasks that the user-supplied 

translation procedures must perform. 

4. A simple but general syntactic framework is provided by the base language 

and is conveniently adopted by user-defined language constructs. Syntactic 

complexities such as parsing do not burden the programmer or obscure the 

semantic issues. 

Why then don't we just abandon this project and program in Lisp? Lisp's static 

semantics are trivial. As such, there is little that the language definition has to say 

about the static properties of a well-formed Lisp program. Indeed, the notion of 

"well-formedness" is on shaky ground in languages that take a view of semantics as 

completely dynamic as that of Lisp. While some may argue that this is a virtue, in 

that the late-binding semantics of Lisp encourages exploratory programming and 

incremental program development, we argue that this is an environment issue and 

not a language issue at all. While we grant that it may be easier to construct 

an incremental implementation of a language with impoverished static semantics 

(e.g. with dynamic typing), there is no necessary connection-between this property 

and incrementality. We contend that a language should be designed with an eye 

toward early binding of as many semantically-relevant constraints as possible. Such 

an approach facilitates reasoning about programs, and allows greater confidence to 

be expressed in their correctness prior to execution. A more precise statement of 

the programmer's intent allows the translator to provide a higher level of assistance 

to the programmer, detecting errors that might otherwise go unnoticed, as well 

as permitting more efficient code generation. Our program, then, is to devise a 

mechanism allowing us to realize the flexibility of Lisp's meta programming facilities 

within the context of a language with rich static semantics. As a consequence of 

our sensitivity to semantics, we shall additionally correct a few flaws in Lisp macros 

due to Lisp's essentially syntactic treatment of macro expansion. 

6 Semantic macros 

The traditional embedded metaprogramming facility is the macro. Lisp macros 

depart from most others in that macro expansion is performed by an arbitrary user­

defined computation, rather than a fixed expansion algorithm driven by a simple 

parameterized template. All macros, however, suffer from a name capture problem 

due to their substitution semantics, whether the expansion is in textual or structural 

form. The problem is that a fragment of program structure, as represented by a 

on semantic cleanliness and simplicity than others. 



SEMANTIC MACROS 9 

string of tokens or a fragment of an abstract syntax tree, does not necessarily mean 

anything in isolation. Only in the context of some environment providing bindings 

for its free identifier occurrences can a meaning be assigned. The environment in 

effect where the macro expansion ultimately appears may not be known at the time 

that the macro definition i!> written. Likewise, arguments passed to a macro are 

usually unaware of bindings that may be established by the macro expansion that 

may conflict with their own free identifiers. Note that this is just the so-called funarg 

problem of dynamically-scoped Lisp dialects in a slightly different context. A more 

useful definition would require that the free identifiers in the expansion refer to the 

same entities that were bound to those identifiers in the context in which the macro 

was defined ( cf. generic parameters in Ada). Similarly, macro parameters should 

usually be closed in the environment of the macro call, not in the environment of 

the expansion. We qualify this statement because there are cases where a macro 

definition is intended to establish a new environment for its arguments, or where 

an unbound identifier is needed as a macro argument, e.g. in a binding construct. 

Another deficiency of macros is that they require the meaning of the macro call 

be expressed entirely in terms of source code in the base language. We wish to add 

new static semantics, as well as perform syntactic transformations. There is no way 

to propagate semantic attributes between textually distinct macro calls other than 

to stash them in global expansion-time variables. There is little that can be done 

with purely local information; in particular, we cannot implement type-checking. 

In the light of these considerations, we propose a somewhat different interpre­

tation of a macro-like construct. Let us suppose that the static "meaning" of every 

well-formed program fragment is represented by a set of translation-time attributes. 

(We shall avoid deeper questions of semantics by operationally defining semantics in 

terms of the translator.) Such attributes will in general exhibit a functional depen­

dence on attributes of the surrounding context, most notably the environment. To 

simplify things somewhat, we shall collect the attributes supplied by context, i.e. the 

inherited attributes, into a single value, in general a tuple, and likewise thesynthe­

sized attributes. We shall define the static semantic value of any program fragment 

to be a function from an inherited attribute tuple to a synthesized attribute tuple. In 

effect, we have eliminated inherited attributes in the traditional attribute-grammar 

sense by allowing synthesized attributes to range over a higher-order domain, i.e. 

one with functional values. This trick is a familiar one from denotational semantics, 

and in fact what we are suggesting is a denotational approach to static semantics, 

while expressing dynamic semantics operationally in terms· of the base language. 

Having thus defined the meaning of the built-in language constructs in this way, 

it is clear that new constructs, analogous to macros, may be defined that compute 

over the domain of semantic values rather than abstract syntax trees. We call these 

constructs semantic macros because they respect the static semantics of the struc-
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tures they manipulate, ·and by analogy to Leavenworth's syntax macros [11], so 

named because they respect the syntax of the language. 

The signatures of the inherited and synthesized attribute tuples of a semantic 

value define an interface that must be known in order to make use of the value. To 

insure that semantic values are composed only in ways that are meaningful with 

respect to these interfaces, we must impose a type discipline on their use. A most 

natural discipline arises from the syntactic type (phylum, or nonterminal symbol) 

associated with the language construct possessing the semantic value in question. 

By adopting the convention that there is exactly one semantic value type associated 

with every syntactic form of a given phylum, we guarantee that syntactically well­

formed programs give rise to type-correct construction of semantic values. 

It may be helpful at this point to examine a simple example before proceeding. 

A Pascal-style for loop is easily defined as a semantic macro, and illustrates in 

a simple context most of the mechanisms that will be needed for more complex 

definitions. The notation used is that of the language XL, to be defined in detail in 

the following section. For the present, we shall be content to rely on the reader's 

intuition. 

(syntax EXPR (for [var NAME] [initial EXPR] [final EXPR] [body EXPR]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [start (initial env)] 

[limit (final env)] 
[cbody (close-expr body env (list var))])) 

(unless (equiv-types? integer-type (expr-type start)) 

(type-error integer-type (expr-type start) "in FOR initial value")) 

(unless (equiv-types? integer-type (expr-type limit)) 

(type-error integer-type (expr-type limit) "in FOR limit value")) 

( (EXPR 
(let ((val [limit ,,limit]) 

(fun [loop ([,var integer]) void 
(unless (> ,(name->•expr var) limit) 

,(lambda ([e environment]) 
(let ((val [b (cbody e)])) 

(unless (equiv-types? void-type (expr-type b)) 

(error "FOR boqy must be of VOID type")) 

b)) 

(loop (+ ,(name->•expr var) 1))) ])) 

(loop , , start))) 
denv))))) 
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The syntax declaration introduces a new syntactic form. The first line of the 

definition indicates that the new form belongs to the phylum EXPR, that of express­

sions, and is written as 

(for var initial-value final-value body) 

where var is a NAME, i.e. an identifier, and initial-value, final-value, and body 

are EXPRs. In XL, all forms follow this fully-parenthesized, Lisp-like syntax. In 

the second line, we capture the global environment in effect at the time that this 

definition is compiled, which is the appropriate environment in which to resolve 

names appearing literally in the macro expansion. The lambda expression beginning 

on the third line, a function of an environment, constitutes the functional semantic 

value of the for form. The type environment represents a compile-time description 

of the run-time environment in which the new form.will execute. Its values, like all 

values manipulated in this definition, are meta-values, belonging to the execution 

of the compiler, not the user's program. 

When invoked, the semantic value function first closes its argument expressions 

in the proper environments. The expressions for the initial and final index values 

are closed in the environment in which the use of for appears, i.e. the value of the 

parameter env. These expressions are represented by functions of the environment, 

thus they are simply applied to env. The body cannot yet be closed, as it must 

see the binding of var yet to be created, but it should be closed with respect to all 

other variables. The function close-expr partially closes body in the environment 

env, leaving it open with respect to the name var. 

Next, the types of the initial and ~nal value expressions are verified to be of inte­

ger type, represented by the type descriptor value named integer-type. The form 

"(EXPR ... ) " is a quasiquotation, a means of denoting a semantic value by writing 

an XL syntactic form that would possess it. The keyword EXPR indicates that the 

quasiquotation should be interpreted as an instance of the phylum EXPR. Forms 

within the quasiquotation preceded by "," or ", , " denote unquotations, which are 

first evaluated to obtain the semantic value they represent. The "," indicates that 

the following form evaluates to the semantic value to be used in place of the unquo­

tation in constructing the value of the quasiquotation. In this example, the ",," 

form is a shorthand for ", (lambda ( [e environment]) unquoted-value)." 

The expansion of the for construct is a simple tail-recursive function definition 

and invocation. The function name->•expr maps a token (name) value to the 

semantic value of an expression consisting of that name. Within the body of the 

expansion, we capture the expansion-time environment after it has been augmented 

with the binding of var, using the form "(lambda ( [e environment]) ... ) ," and 

use the captured value to complete the closure of the body. In XL, statements are 

modelled as expressions that return a value of the trivial type void. Thus, once 

• ~ 
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the body is fully closed, removing all functional dependence on the environment, 

we verify that the body is of void type. 

This example should serve as a paradigm for the use of semantic macros. Al­

though subsequent examples will be much more complex, most will have an essential 

resemblance to this one. 

7 XL: A language with semantic macros 

In order to illustrate the notion of semantic macros, we have implemented a sim­

ple language incorporating this mechanism. The language, XL, for eXperimental 

Language, is intended only as an experimental vehicle, thus it favors simplicity over 

utility in all aspects unrelated to its novel definitional facility. Even so, we have 

chosen to focus on metaprogramming proper, and have not included the provisions 

for visibility control and namespace management that would be required for the 

definition of secure abstract data types. 

Much of the semantics of XL were borrowed from Scheme [21], with further in­

fluences from ML [16] and FX-87 [7]. Since the XL compiler generates Scheme as its 

object code, the similarity to Scheme simplified implementation considerably. Un­

like Scheme, however, XL is statically-typed, and accommodations had to be made 

for the additional declarative structure. The syntax of XL is embedded within S­

expressions as in Scheme, but is considerably more structured in that many distinct 

syntactic classes are distinguished. This makes the language more interesting for 

extension purposes at the expense of a more deeply-nested structure, resulting in 

yet more parentheses than is customary in Lisp-like languages. Since the focus of 

this work is on semantics, we make no apologies for this syntactic awkwardness. 

XL is an expression-oriented language, supporting higher-order functions and 

encouraging a functional style of programming. Side-effects are permitted, but play 

a less significant role in XL programming than in the Algol-family languages. The 

XL system is conversational, presenting to its user an interactive command inter­

preter. A program is merely a sequence of commands, entered either interactively 

or loaded from a file. Commands are provided for defining types and variables, 

evaluating expressions, and extending the language, as well as for "environmental" 

actions such as loading files. Commands are part of the predefined infrastructure, 

and are not subject to extension. 

At any given time, commands are interpreted relative to a unit, consisting of 

two narp,espaces, one representing the context in which object-level computations 

are to be interpreted, and the other representing the one in which compile-time 

computations are to be performed. Each namespace is further subdivided into 

two parts: an environment, associating identifiers with their referent entities, e.g. 

• I 
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types and variables, and a keyword table, associating syntactic keywords with their 

interpretations. The keyword table is used by the parser at the time code is read 

into the unit and the environment is used as the environment argument to the 

semantic values of expressions. 

XL supports a variety of data types. Integers, characters, and strings are im­

ported from Scheme with few changes. Scheme symbols are called tokens, and are 

denoted in XL as symbols preceded by a single-quote. Constructed types include 

assignable references, vectors (with assignable components), heterogenous tuples, 

records with named fields, tagged unions, and homogeneous lists. The record and 

union types are unusual in that they may be incrementally extended, i.e. addi­

tional fields and variants may be declared after the initial type definition and with 

restricted visibility. 3 

7.1 Syntax 

The lexical syntax of XL is fixed, and is largely borrowed from the underlying 

Scheme system. The one exception to the fixed lexical syntax is that symbols may 

be removed from the class of names (identifiers) and added to the class of reserved 

keywords as new special forms are defined. 

• Special symbols play a special syntactic role, often serving to abbreviate an­

other form. The special symbols of XL are "(", ") ", "[", "] ", ", ", "ID", and 

" ; " . These characters cannot be used in names or keywords. 

• Keywords are written as Scheme symbols, and serve to indicate syntactic 

structure. They have significance only to the parser, and have no semantics. 

Keywords are reserved, and cannot be used as names. 4 

• Names are also written as Scheme symbols, and represent the names of entities 

such as types and variables. In the event that a symbol is defined as a keyword, 

that interpretation takes precedence and the symbol may not be used as a 

name. Conversely, any symbol that is not a keyword is always taken to be a 

name. Note that the status of a symbol as a keyword or a name is relative 

to a particular unit. A symbol may be a keyword in one unit and a name in 

another. 

3Such a mechanism was proposed in [5], where an efficient implementation was sketched. We 

implement records, as association lists, reducing efficiency but allowing a straightforward implemen­

tation in our incremental compilation system. 
4 This restriction is actually not enforced by the present implementation. Indeed, it is often 

apparent from context whether a symbol should be interpreted as a keyword or a name. Where 

ambiguity arises, it is resolved in favor of interpretation as a keyword. This is the same convention 

used in most Lisp dialects. 
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• Numbers are written as Scheme integers, and represent integer literals. In the 

interest of simplicity, XL does not support any other numeric types. 

• Characters are written as Scheme characters, and represent character literals. 

• Strings are written as Scheme strings, and represent string literals. 

• Tokens are written as Scheme symbols preceded by a single quotation mark 

("'"). Unlike in Scheme, the quotation mark is considered part of the syntax 

of the token literal, and may not be used in other contexts. 

• Booleans are written #t for true and #f for false. 

New keywords may be introduced dynamically as language extensions are de­

fined, altering the set of symbols available for use as names. As such definitions 

take effect only between top-level forms (commands), each form will be parsed with 

respect to a stable set of keywords. Case is not significant in keywords, names, or 

tokens. 

Examples 

if, let 1 &:bind 
x, integer, + 

o, 15, 12345 
#\a, #\Z, #\space 

"", "foobar", "This is a string." 

'foo, 'This-Is-A-Token 

#t, #f 

Keywords 
Names 
Numbers 
Characters 
Strings 
Tokens 
Booleans 

A complete and well-formed syntactic unit is called a form. Every form is 

associated with a syntactic type, its phylum. The simplest forms consist of a single 

lexical token and are called atomic forms. Atomic forms belong to predefined phyla 

and have a semantic value of predefined type, according to the following table: 

Atomic Form Phylum Name Type of Semantic Value 

Name NAME Token 

Number NUMBER Integer 

Character CHARACTER Character 

String STRING String 

Token TOKEN Token 

Boolean BOOLEAN Boolean 
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All syntactic forms other than these atomic forms are called composite forms. 

Such forms are written ([keyword] [form ... ]) , that is, an optional keyword fol­

lowed by zero or more subforms and surrounded by parentheses. The keyword serves 

to distinguish one composite form from another. In the case that the keyword is 

omitted, the form is treated as if the special keyword &null had appeared. Within 

a phylum, the keyword must be unique; however, the same keyword may be used 

in distinct phyla. As a consequence, it is possible for two textually identical form 

instances to belong to different phyla, as determined by their syntactic contexts, 

and thus have differing semantic interpretations. 

Within the phylum of expressions (EXPR), we further distinguish between func­

tion applications, in which the keyword is omitted or is &null, and all other forms, 

called special forms. These two cases deserve special mention because in most appli­

cations the function expression is a single name, rendering the application visually 

indistinguishable from a special form. Only by accounting for which symbols have 

been reserved as keywords can we discern the difference. Semantically, however, the 

difference is crucial. All applications are processed identically, thus it is the function 

itself that is of primary interest. Special forms, on the other hand, are processed in 

an idiosyncratic manner, to which the programmer's attention should be directed. 

Furthermore, since keywords do not denote values, a special form name cannot be 

passed as a parameter, though some special forms do in fact behave in a manner 

otherwise appropriate for an application. 

Brackets (" [" and "] ") denote a simple abbreviation used in declarations and 

the formal parameter lists of functions. The form [form ... ] is treated as if 

(&:bind form ... ) had been written instead. The comma character "," preced­

ing a form is read as if (unquote form) had appeared. The character "~" pre­

ceding a form is read as (unquote-list form). Similarly, the double comma ",," 

and double atsign "~~" preceding a form abbreviate (unquote-reduced form) and 

(unquote-list-reduced form) respectively. The unquote ... operators are part 

of the syntax of quasiquotation, and will be further explained in that connection. 5 

Comments begin with a semicolon ( "; ") and extend to the end of the line. 

In the remainder of this section, we introduce the syntactic forms of XL and 

their semantics. All built-in syntactic forms are displayed like this: 

(if pred: EXPR cans: EXPR alt: EXPR) EXPR 

5It is unfortunate that the user is not allowed to define more abbreviations of this kiLd. These 

abbreviations are implemented using the reader macro facility of the Scheme system in which XL 

is implemented, which is an undisciplined mechanism which we do not wish to expose to the XL 

user. The need for these abbreviations is entirely a consequence of our choice of the verbose Lisp-like 

syntactic framework, and could be avoided if the parser were more powerful. 
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The subforms are given descriptive names, and their phyla are indicated. The 

phylum to which the entire form belongs appears to the right. Functions are dis­

played similarly, showing the syntax of a typical application of the function. Since 

all function calls and their arguments belong to phylum EXPR, we display their 

types instead: 

( + x: integer y: integer) integer 

Note the typographic convention used here: phylum names are displayed in small 

capitals and type names in the normal Roman font. Some special forms simulate 

generic, or polymorphic, functions. In this case, it is more informative to display 

them like functions: 

(cons elt: a: liJt: list-of( a:)) list-of( a:) 

The meta-variable a: denotes an arbitrary type, indicating that the cons function 

is applicable to lists of any element type whatsoever. Note that any form of EXPR 

that accepts ·a variable number of arguments or an argument of a polymorphic 

type must be a special form. Special form names do not denote values, thus such 

polymorphic operations cannot be bound to variables, passed as arguments, or made 

components of data structures. 

7.2 Expressions 

Expressions in XL denote values and may also have side-effects. Every expression 

has a type, which determines the contexts in which it may legally be used. Some­

times an expression is useful only for its side-effects, and need not yield any value 

at all. Such expressions usually yield the trivial value •void•, of type void. 

Expressions fall into four classes: literal.!!, variable.!!, application.!!, and .!!pecial 

formJ. Literals denote values of certain built-in types, and are evaluated trivially. 

Variables are names bound to values, and stand for the value so bound. Applica­

tions have the form (funexpr [ argexpr ... ]) and denote the result of applying the 

function denoted by funexpr to the arguments denoted by the expressions argexpr. 

Special forms have idiosyncratic syntax and evaluation rules, but are always com­

posite forms with an explicit keyword. 

Many special forms are closely associated with a particular data type, and will 

be described in conjunction with that type; the others are described here. 

literal: NUMBER 

literal: CHARACTER 

EXPR 

EXPR 
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literal: STRING 

literal: TOKEN 

literal: BOOLEAN 
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EXPR 

EXPR 

EXPR 

With the exception of NAME, any form of the atomic phyla described in the 

previous section may appear alone as an expression, denoting a value of the same 

type as its semantic value. 

variable: NAME EXPR 

A variable denotes the value to which it is currently bound. A compile-time 

error is signalled if no binding for the variable is in scope, or if the variable is not 

bound to a value, e.g. in the case it is bound to a type. 

(begin exprs: EXPR ... ) EXPR 

The expressions exprs are evaluated in sequence from left to right. The value 

of the entire begin expression is that of the last expression. The values of the 

preceding forms are discarded, thus they are useful only for their side-effects. The 

trivial instance (begin) yields •void•. Certain other forms, e.g. lambda, let, when, 

and unless, have bodies consisting of a sequence of expressions that are processed 

as if they were enclosed in a begin form. The bodies of such forms are thus called 

implicit begins. 

(fun: EXPR args: EXPR ... ) EXPR 

An expression written as a composite form without a keyword (or with a keyword 

of &null) is a function application. The expression fun is first evaluated, and must 

yield a value of a functional type. The arguments args are then evaluated in an 

unspecified order, yielding a tuple of values. The function is applied to the argument 

values, yielding a result and possibly performing a side-effect. A compile-time error 

is signalled if the types of the arguments do not match those specified by the type 

of the function. 

(lambda FPARM-LIST body: EXPR ... ) EXPR 

(FPARM ... ) FPARM-LIST 

[arg:NAME type:TYPE] FPARM 

A lambda expression evaluates to a functional value. The resulting function, 

when invoked on arguments of types specified by type, returns the value of body 

evaluated in the environment at the point where the lambda expression occurs, 

augmented with the bindings of the actual parameters to the variables args. The 

body is an implicit begin. 



18 SEMANTICALLY-SENSITNE MACROPROCESSING 

(if pred: EXPR cons: EXPR) EXPR 

(if pred: EXPR cons: EXPR alt: EXPR) EXPR 

The expression pred is first evaluated, and must yield a boolean value. If the 

val.ue is #t, then the result is obtained by evaluating cons, else the value of alt is 

returned. The types of cons and alt must be the same. H alt is omitted, the default 

value •void* of type void is used in its place. 

(when pred: EXPR body: EXPR ... ) EXPR 

(unless pred: EXPR body: EXPR ... ) EXPR 

The expression pred is first evaluated, and must yield a boolean value. The 

when form evaluates its body as an implicit begin in the case that pred evaluates 

to #t, else it returns •void•. The unless form is similar, but evaluates its body 

when pred evaluates to #f. In either case, the value of the body is discarded, and 

the entire conditional yields •void•. The two-armed conditional if should be used 

except when the value of the conditional is to be ignored. 

7.3 Declarations 

Declarations define the meanings of names. Names are bound to objects called 

entities. The set of entities includes variables and named types, and may be ex­

tended by the user. XL is a lexically scoped language, in which the scope of a 

definition is textually determined. Redefinitions of a name within the scope of a 

previous definition temporarily shadow the old definition within the scope of the 

redefinition. 

(let DECL-LIST body: EXPR ... ) 

(decl: DECL ... ) 

EXPR 

DECL-LIST 

The let construct introduces new bindings into the environment. The elements 

of the declaration list are processed sequentially, each within the context of the 

bindings established by the declarations preceding it as well as those of the scope 

enclosing the entire form. Any side-effects produced by the declarations (e.g. from 

embedded expressions) are guaranteed to take place sequentially. The expression 

body is then evaluated as an implicit begin in the context of the new environment 

and yields the value of the entire let form. 

(val VALBIND ... ) DECL 

[var: NAME val: EXPR] VALBIND 

Value declarations introduce one or more bindings of variables to values. The 

expressions val are evaluated in an unspecified order. The resulting values are bound 

pairwise to the corresponding variables var, and these bindings are then established 
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simultaneously by the declaration. The types of the variables are taken from their 

defining expressions. 

(type TYPEBIND ... ) DECL 

[tvar: NAME type: TYPE] TYPEBIND 

Type declarations introduce names for one or more types. Unlike value declara­

tions, type declarations give a mutually-recursive interpretation to the list of type 

variables tvar in which the variables being bound are made accessible within the 

defining type expressions type. 

(fun FUNBIND ... ) DECL 

[var: NAME FPARM-LIST rtype: TYPE body: EXPR] FUNBIND 

(args: FPARM ... ) FPARM-LIST 

[arg: NAME type: TYPE] FPARM 

Function declarations provide a convenient way to define function bindings as 

an alternative to using a value binding with a lambda-expression as the defining ex­

pression. Additionally, function declarations allow recursive and mutually-recursive 

references within a single fun form. It is not possible to define recursive functions 

using value declarations. The formal parameters args are specified in the same man­

ner as for lambda expressions. The result type rtype must be explicitly declared, 

and must match that of the expression body. 

7.4 Types 

Types represent compile-time descriptions of values to be created and manipulated 

at run-time. Their primary purpose is type-checking, a compile-time analysis in­

tended to prevent misinterpretation of a value by the application of inappropriate 

operations to it. Types also serve as repositories of compile-time information about 

the expressions to which they are attached, such as the valid component names 

available for selection from a record. In general, two built-in types are consid­

ered equivalent if they are either identical ground types (i.e. non-constructed types) 

or were obtained by the application of the same constructor to equivalent types. 

Two exceptions to this structural type equivalence rule are record and union types. 

User-defined types follow their own type equivalence rules as defined by the user. 

The types of the XL base language are described below. Discussion of certain 

types used primarily in writing semantic macros will be deferred to a later section. 

typevar: NAME TYPE 

A name bound to a type denotes a type. A compile-time error will be reported 

if typevar is unbound or bound to an entity other than a type. 

• I 
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7.4.1 Void 

The void type has a single trivial value upon which no operations are defined. It is 

used as the type of expressions that are to be executed only for their effects. 

void TYPE 

•void* EXPR 

The identifier •void* is predeclared to refer to the trivial value, of type void. 

7 .4.2 Integers 

The integer data type and its semantics are inherited from the underlying Scheme 

implementation. As presently implemented, the size of representable integers is 

limited only by available memory. 

integer TYPE 

c- x: integer) integer 

( + x: integer y: integer) integer 

(- x: integer y: integer) integer 

(* x: integer y: integer) integer 

(/ x: integer y: integer) integer 

The usual arithmetic operations of negation, addition, subtraction, multiplica­

tion, and division on integers are provided. The result of integer division always has 

the sign of the product of its arguments. Note the use of"-" to denote negation. 

(= x: integer y: integer) boolean 

(/ = x : integer y: integer) boolean 

( < x: integer y: integer) boolean 

( <= x: integer y: integer) boolean 

(> x: integer y: integer) boolean 

(>= x: integer y: integer) boolean 

The integer relational operators equality, inequality, less-than, less-than-or­

equal-to, greater-than, and greater-than-or-equal-to are provided. All return a 

boolean result. 

7 .4.3 Characters 

The character type is inherited from the underlying Scheme implementation. In the 

present implementation, it includes the full ASCII character set. 
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character 

(char=? x: character y: character) 

(char I=? x: character y: character) 

(char<? x: character y: character) 

(char<=? x: character y: character) 

(char>? x: character y: character) 

(char>=? x: character y: character) 
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TYPE 

boolean 
boolean 
boolean 
boolean 
boolean 
boolean 

A full set of relational operators on characters is provided. 

case-sensitive according to the ASCII collating sequence. 
All comparisons are 

(integer->character n: integer) character 

(character->integer c: character) integer 

(character->string c: character) string 

The functions integer->character and character->integer convert be­

tween characters and their ASCII integer character codes. The function 

character->string returns a string of length one containing the given character. 

7.4.4 Strings 

Strings are immutable, indexable sequences of characters. Strings are provided as a 

ground type for consistency with Scheme, though vectors of characters would serve 

much the same purpose .. 

string 

(string=? x: string y: string) 

(string/=? x: string y: string) 

(string<? x: string y: string) 
(string<=? x: string y: string) 

(string>? x: string y: string) 
(string>=? x: string y: string) 

TYPE 

boolean 
boolean 
boolean 
boolean 
boolean 
boolean 

A full complement of string relational operators are provided. 

is lexicographic using case-sensitive character comparison. 
String ordering 

(string-length s: string) 

This function returns the length of a string. 

permissible. 

integer 

Empty strings of length zero are 
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(string-append head: string tail: string) string 

The string concatenation function string-append returns a string consisting of 

the characters of string head followed by the characters of string tail. 

(string-ref s: string index: integer) character 

This function returns the index -th character of the string s. The characters 

of s are indexed left to right by ascending integers starting from zero for the first 

character. 

(substring s: string start: integer end: integer) string 

This function extracts a substring of the given string s, consisting of succes­

sive characters starting from index start (inclusive) and continuing through end 

(exclusive). 

7 .4.5 Boo leans 

Boolean values represent the logical truth values "true" (#t) and "false" (#f). 

boolean 

(bool= x: boolean y: boolean) 

(bool/= x: boolean y: boolean) 

Boolean equality and inequality. 

(not x: boolean) 

(and x: boolean ... ) 

(or x: boolean ... ) 

TYPE 

boolean 
boolean 

boolean 
boolean 
boolean 

Boolean connectives. The function not returns the logical complement of its 

argument. The special form and evaluates its arguments left to right, and returns 

#t if all evaluate to true. If any argument evaluates to false, evaluation of further 

arguments is aborted and #f returned. If no arguments are provided, #t is ret•1med. 

The special form or evaluates its arguments left to right, and returns #f if all 

evaluate to false. If any argument evaluates to true, evaluation of further arguments 

is aborted and #t returned. If no arguments are provided, #f is returned. 
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7.4.6 Tokens 

Token types are analogous to Scheme symbols. The only attributes of a token are 

its identity and its string name. All symbols with the same name are taken to be 

identical. While strings could be used in the place of tokens, the restricted semantics 

of tokens encourages an efficient implementation in which tokens are represented 

compactly as pointers and quickly tested for identity using pointer equality. 

token TYPE 

( eq? x: token y: token) boolean 

Compare two token values, returning true if they both denote the same (identi­

cal) token object. 

(token->string t:token) string 

Return the name of a token as a string. 

(string->token s: string) token 

Return the unique token with the given string name. 

(generate-token prefix: string) token 

Return a new, unique token, guaranteed not to be eq? to any other token. The 

exact form of the token's string name is unspecified, but will include the given string 

prefix as its initial substring. 

7 .4. 7 Functions 

Functional types describe mappings from a tuple of values to a single result value 

(possibly the trivial value •void*). Functions are created by lambda expressions or 

:fun declarations. The only operation defined on functions is application. 

(:fun types: TYPE-LIST rtype: TYPE) 

(argty: TYPE ... ) 

TYPE 

TYPE-LIST 

The type of a function mapping arguments of type argty to a result of type 

rtype. 
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7 .4.8 References 

References are assignable storage locations. With the exception of vectors, they 

constitute the only mutable objects in XL. 

(ref-to reftype: TYPE) TYPE 

Create a reference type whose instances are restricted to holding values of type 

reftype. 

(ref value: a) ref-to( a) 

Create a reference value whose initial content is given by the expression value. 

(get reference: ref-to( a)) 
(set! reference: ref-to( a) value: a) 

The function get fetches the current content of reference. 

reference may be altered with set!. 

a 
void 

The content of a 

(same? r1: ref-to( a) r2: ref-to( a)) boolean 

Returns true if references r1 and r2 are the same object, i.e. were created by 

the same invocation of ref. 

7.4.9 Vectors 

Vectors are homogeneous indexable aggregates of objects. The length of a vector is 

determined dynamically when it is created and is not considered a part of its type. 

(vector-of elttype: TYPE) TYPE 

Create a vector type whose instances contain elements of type elttype. 

(vector eltval: a ... ) vector-of( a) 

Create a vector consisting of the elements eltval, which must all be of the same 

type. There must be at least one such expression, else it would be impossible 

to determine the type of the resulting vector. To create an empty vector, use 

make-vector. 

(make-vector size: integer initval: a) vector-of( a) 

Create a vector consisting of size copies of the value of initval. The size must be 

a non-negative integer. An empty vector may be specified by a size of zero, but note 

that an initial value is still required, from which the type of the resulting vector 

will be determined. 
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(vector-length vector: vector-of( a)) 

Returns the number of elements in vector. 
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integer 

(vector-ref vector: vector-of( a) index: integer) a 

(vector-set! vector:vector-of(a) index:integer value:a) void 

The function vector-ref selects the index-th element of vector. The elements 

of a vector are numbered left to right by ascending integers starting from zero. The 

value of a vector element may be altered with vector-set!. 

7 .4.10 Lists 

Lists are immutable homogeneous sequences of objects. 

(list-of elttype: TYPE) TYPE 

Create a list type whose instances are restricted to elements of type elttype. 

(cons elt: a list: list-of( a)) list-of( a) 

Construct a new list in which elt is prepended to the elements of list. 

(car list: list-of( a)) a 

(cdr list: list-of( a)) list-of( a) 

The function car returns the first element of a list, signalling a run-time error 

if the list is empty. The function cdr returns the tail of the list, i.e. all but the first 

element, and also signals a run-time error if the list is empty. 

(list eltval:a ... ) list-of(o) 

Create a list consisting of the elements eltval, which must all be of the same 

type. There must be at least one such expression, else it would be impossible to 

determine the type of the resulting list. To create an empty list, use empty-list. 

(empty-list o:TYPE) list-of( a) 

Return an empty list of the specified element type. 

(length list: list-of( a)) integer 

(null? list: list-of( a)) boolean 

The function length returns the number of elements in a list. To determine if 

a list is empty, null? provides a concise alternative to comparing the length with 

zero. 

• I 
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(append head:list-of(a) tail:list-of(a)) list-of(a) 

The list concatenation function append returns a list consisting of the elements 

of list head followed by the elements of list tail. Both lists must have the same 

element type, else a compile-time error is reported. 

(reverse liJt: list-of( a)) list-of( a) 

Return a list consisting of the elements of liJt but in reverse order. 

7.4.11 -Tuples 

Tuples are the simplest heterogeneous data structure supported by XL. The fields 

are indexed positionally. Tuples with named components may be provided by ex­

tension, so we provide only this simple form as a primitive. 

(tuple-of ftype: TYPE ... ) 

Create a tuple type with components of the given types. 

(make-tuple fual: EXPR ... ) 

Construct a tuple value. 

TYPE 

EXPR 

(tuple-ref element: NUMBER tval: EXPR) EXPR 

Select an element from a tuple. The elements are numbered left to right starting 

with zero. 

7.4.12 Records 

Records are immutable heterogeneous aggregates of named components. It is not 

necessary to declare all of the components of a record type when it is first introduced. 

Additional components, whose visibility may be restricted to a smaller region of the 

program, may be declared incrementally. The declaration of these extensions takes 

the form of a type declaration, but is best considered as declaring an expanded 

view of the extended type. The additional components are only visible within the 

scope of the extension, but are taken to be a permanent part of all objects of the 

(unextended) base type. Values that already exist at the time an extension is made 

are modified retroactively (in effect) to contain the new components, using default 

values supplied by the extension declaration. Conceptually, all objects of the base 

record type, or any extension thereof, contain, from the moment of their creation, 

a complete set of all components declared or ever to be declared in extensions of 

that type. 
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(record-of tag: NAME FIELDSPEC ... ) TYPE 

[fname: NAME jtype: TYPE] FIELDSPEC 

Create a base record type with components named fname of the type indicated 

by the corresponding ftype. Each occurrence of the record-of constructor intro­

duces a new record type, distinct from any others including those with an identical 

set of components. The name tag is used as an identifying label in the printed 

representation of the type. 

(extend-record rtype: TYPE EXTFIELDSPEC ... ) TYPE 

[fname: NAME jval: EXPR] EXTFIELDSPEC 

Declare additional components belonging to the record type rtype. A default 

initial value fval must be provided for each new component, which will serve as the 

value of the component for record instances created in a scope in which the new 

component was not visible. The types of the components are taken from those of 

the initial value expressions. The type returned by extend-record is equivalent. to 

rtype and all other extensions thereof for type-checking purposes, but will reveal 

an extended set of components to select and update. This works because any 

missing components will be supplied from the default values if an attempt is made 

to access them. 

(make-record rtype: TYPE FIELDINIT ... ) EXPR 

[fname: NAME jval: EXPR] FIELDINIT 

Create an instance of the record type rtype. A value must be provided for all 

components defined by rtype. 

(select rtype: TYPE fname: NAME rval: EXPR) EXPR 

Return the value of the component named fname from the record rval. A 

compile-time error is signalled if no component by that name is defined by rtype. 

The type rtype must be the same as the type of rval or an extension thereof. 

(update rtype: TYPE rval: EXPR FIELDINIT ... ) EXPR 

[fname: NAME jval: EXPR] FIELDINIT 

Create a copy of the record value rval in which the named components are 

replaced with the indicated values and all other components remain the same. Note 

that this is a shallow copy, i.e. the components are not copied and retain their 

original identity. All components named must be defined by rtype, which must the 

be same as the type of rval or an extension thereof. 
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7.4.13 Unions 

Unions are immutable objects consisting of a single component drawn from a finite 

number of typed variants, and a label indicating to which variant the component 

of the union belongs. Like record components, additional union variants may be 

declared with possibly restricted visibility. 

(union-o:f tag: NAME VARSPEC ... ) TYPE 

[vname: NAME vtype: TYPE] VARSPEC 

Create a union type with variants named vname of the type indicated by the 

corresponding vtype. Each occurrence of the union-o:f constructor introduces a 

new union type, distinct from any others including those with an identical set of 

variants. The name tag is used as an identifying label in the printed representation 

of the type. 

(extend-union u.type: TYPE EXTVARSPEC ... ) TYPE 

[vname: NAME vtype: TYPE] EXTVARSPEC 

Declare additional variants belonging to the union type u.type. The identifier 

vname is the variant tag, and vtype is the required type of the component when the 

variant is in effect. 

(is? u.type: TYPE vname: NAME u.val: EXPR) EXPR 

(inject utype: TYPE vname: NAME valu.e: EXPR) EXPR 

(project utype: TYPE vname: NAME uval: EXPR) EXPR 

The variant enquiry predicate is? returns true if the union value uval belongs to 

the variant vname, else it returns false. Union values are created by inject, which 

creates a union value whose variant is vname and component value is valu.e. The 

type of the component value must agree with that declared for the variant. The 

component of a union is extracted with the project operation, which must specify 

the expected variant. A run-time error is signalled if the variant vname is not valid 

for the value u.val. For is? and project, the type of uval must be equivalent to 

u.type or an extension thereof. In all cases, the variant vname must be defined by 

the type utype. 

7.4.14 Options 

An option type is similar to a union of two variants in which one of the variants is 

empty, i.e. of type void. Unlike unions, however, option types follow a structural 

rule of type equivalence, as do lists, vectors, and tuples. Options exist primarily for 

representing the semantic values of optional constituents in syntax declarations, 

but are often useful for "out of band" signalling, e.g. of failure. In Lisp, many 
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functions signal failure by returning nil instead of the expected value. We can 

model this convention in XL by returning an empty option. 

(option-of basety: TYPE) 

Create an option type with base type basety. 

(make-option value: a) 

(empty-option a:TYPE) 

A non-empty option is created by make-option. 

yields an empty option of the specified base type. 

TYPE 

option-of( a) 
option-of( a) 

The operator empty-option 

(empty? oval: option-of( a)) boolean 

(value oval: option-of( a)) a 

The predicate empty? returns true if the option oval is empty, else it returns 

false. The component value of a non-empty option may be extracted with value. 

A run-time error is signalled if the option is empty. 

(if-present var: NAME val: EXPltcons: EXPR alt: EXPR) EXPR 

The expression val must evaluate to a value of an option type. If the option is 

not empty, the expression cons is evaluated with var bound to the contents of the 

option, else the expression alt is evaluated with var unbound. The result is that of 

the evaluated subexpression. The types of cons and alt must be equivalent. This 

construct provides a convenient shorthand for dealing with option types. 

7.5 Commands 

(define declaration: DECL ... ) COMMAND 

Process a a list of declarations, giving each a scope enclosing the declarations 

immediately following it and all subsequent commands within the unit in which 

it appears. When used interactively at the top-level prompt, the scope is the re­

mainder of the interactive session. A brief message is displayed summarizing the 

definitions introduced. 

(eval expression: EXPR) COMMAND 

Evaluate an expression in the current global environment and display the value 

and type of the result returned. 

(load filename: STRING). COMMAND 

Read the contents of a file into the current unit as if typed interactively at the 

top-level prompt. 

; 



30 SEMANTICALLY-SENSITNE MACROPROCESSING 

(verbose verbose?: BOOLEAN) COMMAND 

When loading from a file, by default, the messages displayed by define and 

eval are abbreviated. This behavior is controlled by the verbose option, which can 

be set by the verbose command. When verbosity is set true, the full message is 

displayed as in interactive use, else the abbreviated display is presented. 

(debug debug?: BOOLEAN) COMMAND 

Enable or disable display of debugging information, most notably the Scheme 

code produced for each compiled XL form. This command is intended for use by 

the implementor, and requires some knowledge of the compiler internals in order to 

understand the display. 

(scheme) COMMAND 

Enter a Scheme break loop for debugging. Typing "(xl-reset)" at the Scheme 

prompt returns to XL. 

(quit) COMMAND 

Exit the XL system. 

7.6 Meta programming facilities 

The facilities of XL thus far presented have been concerned primarily with object­

level computations, that is, computations about the problem we are trying to solve. 

We now turn to the special facilities of XL that support" computations about the 

program itself. These metaprogramming facilities, provided within the strongly­

typed framework of the XL base language, constitute the novel aspects of this 

work. 
When metaprogramming in XL, we do not manipulate uninterpreted syntactic 

structures as in conventional macro expansion; instead, we manipulate directly the 

semantic values that would be associated with these structures by the interpretation 

functions of a translation semantics. Alternately, we can say that we are manipulat­

ing interpreted syntactic structures, in which the nodes of the abstract syntax tree 

are annotated with the function that will perform the portion of a syntax-directed 

translation associated with the node's phylum. Both views are correct, as repre­

sentational details are suppressed so that it is impossible to recover the syntactic 

structure from the values our metaprograms manipulate, allowing access only on 

the semantic level. 
Every XL form is interpreted with respect to a keyword table and an environment. 

The keyword table governs the internalization of the textual form of the program 

as a semantic value. The interpretation of a type, declaration, or expression will 
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in general depend on the referents of names occurring free in that form. Any 

identifiers that are free in a top-level form must be resolved with respect to the 

appropriate global environment, which maps identifiers to their referent entities. 

The object-level environment describes entities belonging to the object program. In 

particular, identifiers in the object-level environment may be bound to descriptions 

of variables that will not exist until the object program is executed. Clearly, compile­

time metaprograms must be interpreted with respect to an environment in which 

the entities described will exist at compile time, i.e. "meta-run-time." We thus 

provide a meta-level environment or meta-environment to be used in compiling 

metaprograms. Likewise, if we wish to internalize additional metaprogram text, we 

must interpret it with respect to a meta-level keyword table. These components, 

a keyword table and an environment, make up the context, or nameJpace, of the 

meta-level and object-level components of a unit. 

It should be made clear that the terms "object-level" and "meta-level" are rela­

tive. When processing the object program, the bodies of semantic macro definitions 

and their supporting declarations will be viewed as metaprograms. However, we 

may wish to extend the language in which metaprograms are written, in which case 

the extensions will be internalized into the former meta-environment as object-level 

code, and a new meta-environment created in which to compile these extensions. 

Any given unit, i.e. an interactive session or its transcript in a ffie, has direct access 

only to two adjacent levels in the hierarchy of "meta-ness." To load extensions into 

the meta-namespace of a unit, the meta-load command is used, which loads the 

contents of the given ffie treating the meta-namespace of the invoking unit as the 

object-namespace for the loaded code and creating a new meta-namespace as a copy 

of the standard meta-namespace. 6 

As each form is read, it is converted immediately into a semantic value whose 

type is dependent on the phylum to which it belongs. All semantic values arising 

from instances of a given phylum have the same type. This allows us to guarantee 

that syntactically correct programs give rise only to type-correct construction of 

semantic values. 

The three most important predefined phyla for extension purposes are given 

below. Each instance of these phyla is represented as a value of the type given in 

the following table: 

6 This is a rather weak level-shifting mechanism, and places too much significance on files. It 

may be difficult to remove this unwelcome intrusion of files into the semantics of the definitional 

mechanism due to fact that syntax bindings are resolved at read time. 

• 
~ 
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Phylum Type of Semantic Value 

EXPR 
TYPE 
DECL 

*expr = environment -+ expression 

*type = environment -+ description 

*decl = environment -+ declaration 

where declaration= *expr -+ expression 

EXPRs take an environment as an argument and return an expression, a fully 

name-resolved and type-checked code fragment whose type may be queried. TYPEs 

map an environment to a description, a compile-time type descriptor. DECLs map 

an environment to a declaration, a function from an unclosed expression (i.e. a 

function from an environment to an expression) to a closed expression. 

The semantic value types of each of these phyla are given names in the standard 

meta-environment: •expr, •decl, and •type. In addition, the semantic value types 

of the other predefined phyla are also named using the convention of prepending 

an "•" to the phylum name. The structure of these other semantic value types is 

hidden, and values of such types may only be used to build other semantic values 

as arguments to quasiquotations. 

(meta-define declaration: DECL ... ) COMMAND 

(meta-eval expression: EXPR) COMMAND 

(meta-load filename: STRING) COMMAND 

These operations perform analogously to define, eval, and load, but shift up a 

level in the hierarchy of "meta-ness." More precisely, each is executed with respect 

to a unit in which the object namespace is the the meta-namespace of the unit from 

which the command is invoked and the meta-namespace is a newly-created copy 

of the standard meta-namespace. The meta-define command is used primarily to 

define auxiliary definitions needed by the semantic values of syntax definitions. The 

meta-load command can be used to load libraries of language extensions into the 

current unit. The meta-eval command is helpful when debugging definitions in the 

meta-namespace. 

(meta-level-listener) COMMAND 

Enter a new command interpreter ("listener") shifted up a level. The previous 

meta-namespace is treated as the object namespace, and a new meta-namespace is 

created, as in meta-load. Typing the end-of-file character (Control-D) returns to 

the previous command interpreter. 

7. 7 Syntax extensions 

To define new language facilities using semantic macros, it is necessary to declare 

the structure of new syntactic forms, their syntactic roles, and their semantic values. 
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New syntactic classes are introduced with phylum declarations. New syntactic forms 

are introduced with syntax and atom-syntax declarations, which specify to which 

phyla the new forms belong. 

(phylum phylum: NAME semtype: TYPE) COMMAND 

(phylum phylum: NAME semtype: TYPE reducer: EXPR) COMMAND 

The phylum command introduces a new phylum. It has two effects: 

1. A new phylum is added to the keyword table of the object namespace. Sub­

sequent commands may add new syntactic forms to this namespace belonging 

to the new phylum or containing instances of it as constituents. If a phylum 

of the same name has previously been defined in the same namespace, the old 

definition is shadowed, and new references to the phylum name refer to the 

new definition. Syntax declarations processed when the previous definition 

was in effect retain their meanings. 1 

2. The phylum-specific quasiquotation form is created and declared as a form of 

the EXPR phylum in the meta-namespace. If a special form using the same 

keyword was previously defined, whether due to a previous phylum declaration 

or not, the old definition is shadowed and is no longer accessible. 

The optional reducer argument is significant only to quasiquotations belonging to 

the new phylum and will be explained in the sequel. 

(syntax phylum: NAME pat: (pattern) semval: EXPR) 

((item) ... ) 
(keyword: NAME (item) ... ) 

COMMAND 

(pattern) 
(pattern) 

(item) 

t (item) 

[var: NAME phylum: NAME] (item) 

Syntax declarations introduce new composite forms. Usually, an explicit key­

word is provided, but if omitted, it defaults to the keyword tnull. Normally, 

each bracketed argument specification matches a single constituent of the speci­

fied phylum phylum, binding its semantic value to the variable var. The special 

symbols "!" and "t" indicate optional and iterated (repeated) constituents respec­

tively. The pseudo-phyla "(pattern)" and "(phylum)" are used only to decompose 

7 In general, no declaration can have a retroactive effect on the interpretation of previously de­

clared names. Thus the scoping discipline for the XL top-level is like that of ML rather than Lisp. 

Note, however the unusual retroactive modification of objects that takes place during record and 

union extension. 
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a lengthy syntactic description. They are part of the idiosyncratic syntax of syntax 

patterns, and do not have semantic values. 

Any constituents specified to the right of a "!" are optional, and the semantic 

value bound to the pattern variable var is of type (option-of semvaltype), where 

semvaltype is the semantic value type of the matched phylum. If an optional con­

stituent is present, the option contains its semantic value, else the option is empty. 

Note that if any of a group of optional constituents are provided, they all must 

be. For example, the pattern (foo ! [a NUMBER] [b NUMBER]) matches (foo) 

and (foo 1 2), but not (foo 1). To allow all three to match, use the pattern 

(foo ! [a NUMBER] ! [b NUMBER]). The type of the value bound to the pattern 

variable of an optional constituent does not depend on the number of "!" symbols 

that appear to its left. 

The symbol "&:" must be followed by only one constituent, and indicates that 

zero or more occurrences will be matched. The semantic value bound to var is of 

type (list-of semvaltype), where semvaltype is the semantic value type of the 

matched phylum. An iterated constituent is always considered optional, as the list 

of occurrences may always be.empty. If governed by a "!",the interpretation as an 

iterated constituent supersedes the interpretation as an optional one. 

When an instance of the declared syntactic form is read, the expression semval 

is evaluated in the context of the bindings of the pattern variables var to yield 

the semantic value for the form. The expression semval is parsed and closed with 

respect to the meta-namespace of the unit in whose object-namespace the syntax 

declaration appears. If a phylum is extended with a new form having the same 

keyword as an existing one, the old definition is shadowed. 

Example 

(syntax EXPR (increment [exp EXPR]) 
(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
((EXPR (+ ,,(exp env) 1)) denv)))) 

The intent of this definition might more easily be captured by a function def­

inition, but we use a syntax definition for the sake of example. Note the use of 

(definition-environment) to capture the object-level environment in effect at 

the time the syntax definition is processed, so as to provide an appropriate envi­

ronment in which to close the expansion. This assures that the interpretation of 

identifiers appearing free in the quasiquoted expansion "(EXPR ... )," in this case 

only "+",depends only on the context of the definition, not the context of use. This 

is analogous to the closure of lambda expressions in their contexts of definition. 
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(atom-syntax phylum: NAME {atompat) semval: EXPR) COMMAND 

[var: NAME atomic-phylum: NAME] (atompat) 

The simplest syntactic forms are the built-in atomic phyla: NAME, NUMBER, 

CHARACTER, STRING, TOKEN, and BOOLEAN. The atom-syntax command declares 

a coercion from an atomic phylum to another (non-atomic) phylum. Instances 

of the designated atomic phylum atomic-phylum are then permitted to appear in 

contexts where an instance of the target phylum phylum is required. The semantic 

value expression semval defines the semantics of the coercion. It is evaluated in 

an environment in which the pattern variable var is bound to the semantic value 

of the form as an instance of atomic-phylum, and must yield a value of the type 

demanded by the target phylum. The semantic value is parsed and closed with 

respect to the meta-namespace (keyword table and environment) of the unit in 

which the command is invoked. 

The function of atom-syntax may be made somewhat clearer by an example. 

The following might be part a metacircular definition of the built-in phylum EXPR, 

which we will call MYEXPR: 

(atom-syntax MYEXPR [v NAME] 
(lambda ([env environment]) 

(lookup-variable v env))) 

(atom-syntax MYEXPR [n NUMBER] 
(lambda ([env environment]) 

(make-integer-literal n))) 

If a phylum is extended using atom-syntax with an atomic phylum already 

defined for it, the old definition is shadowed and all subsequent instances of the 

phylum will be parsed according to the new definition. The meanings of previously 

parsed forms, however, remain unchanged. 

7.8 Quasiquotation 

In metaprogramming, we explicitly manipulate semantic values. While some oper­

ations constructing semantic values do not correspond to any source-level construct 

of the object language, most do. Thus it is convenient to notate these values using 

the same syntax as is normally employed in the object language. 

For each phylum, a phylum-specific quasiquotation operator is introduced which 

denotes the semantic value of a given instance of the phylum as an expression. 

In general, the quasiquotation operator has the form (phylum-name form) where 

phylum-name is the name of the phylum, and form is an instance of the phylum 

in which one more constituents has been replaced by an unquoting operator. The 
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unquoting operators belong to every phylum and denote an instance of the phy­

lum demanded by their context. The argument to an unquoting operator is an 

expression, whose value becomes the semantic value of the constituent for which 

the unquotation stands. U nquoting operators are legal only as constituents of a 

quasiquotation, and will be rejected as a syntax error in any other context. 

(unquote semval: EXPR) (any phylum) 

When used in a syntactic context within a quasiquotation, this operator denotes 

an instance of the phylum expected in that context and whose semantic value is 

given by the expressions em val. A type error is reported if the type of this expression 

is not equivalent to that required of the semantic value of the expected phylum. The 

abbreviation ",semval" is normally used in preference to unquote. 

(unquote-list semval: EXPR) (any phylum) 

This unquoting operator is similar to unquote, but when used where an iterated 

constituent is required, it stands for the entire list matched by that parameter. The 

semantic value must be a list of the semantic values appropriate for the parameter. 

H unquote-list is preceded or followed by other unquoted e±pressions, the list 

will be spliced in, analogous to unquote-splicing in Scheme. The abbreviation 

"~semval" is normally used in preference to unquote-list. 

The semantic values for most major phyla, including the important built-in 

phyla EXPR, DECL, and TYPE, exhibit a functional dependence on the environment. 

Each has a type of the form environment - T for some type T. More generally, 

though not in the XL base language, there may be multiple contextual parameters. 

The semantic attributes of the phyla (e.g. the type of an EXPR) are associated 

with the values ofT. These values, obtained by applying the functional semantic 

value to one or more context parameters such as the environment, are said to be 

the reduced semantic values for their respective phyla. Likewise, the application of 

such a functional semantic value so as to make its semantic attributes accessible, 

fully-resolved and independent of context, is called reduction. 

Metaprogram code performing semantically-sensitive program manipulations 

must generally deal with reduced semantic values, though unquotations using 

unquote or unquote-list will demand the unreduced values. It is straightfor­

ward to coerce a reduced semantic value to an unreduced value by enclosing it in a 

lambda-expression with dummy context parameters. The situation arises so often, 

however, that it is worth a bit of syntactic sugar to avoid excessive clutter. 

(unquote-reduced semval: EXPR) (any phylum) 

(unquote-list-reduced semval: EXPR) (any phylum) 

These forms are similar to unquote and unquote-list, but are applicable only 
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to phyla for which a reducer was specified in the phylum declaration, or to one 

of the built-in phyla EXPR, DECL, and TYPE. In this case, the reducer is applied 

to the argument expression before it is used in the normal manner of unquote 

or unquote-list. The reducer should coerce the reduced semantic value to its 

unreduced form, generally by "wrapping" its argument (the reduced value) in a 

lambda-expression so as to provide a semantically-vacuous "dependence" on the 

context parameters. The reducer should be coded to perform the coercion to the 

declared semantic value type of the phylum to which it belongs. The extension to 

lists of such semantic values, needed by unquote-list-reduced, will then be gen­

erated automatically. The abbreviations ", , semval" and "CDCQsemval" are normally 

used in preference to unquote-reduced and unquote-list-reduced. 

7. 9 The standard meta-namespace 

With the exception of quasiquotation, the facilities described so far are a part of the 

object language, in which computations about the problem domain are expressed. 

A few commands make reference to the immediately superior meta-namespace, but 

the command names themselves belong to the object namespace. In this section, 

a number of types, functions, and special forms are described that concern compu­

tations over representations of concepts of the XL language itself. These metapro­

gramming facilities are available in the the meta-namespace of every unit. In fact, 

every namespace is the meta-namespace of some unit with the exception of the root 

namespace, i.e. the object namespace of the unit accessible from the interactive 

command interpreter. Thus these definitions are available in all namespaces but 

the root one. 
The standard meta-namespace, from which all other meta-namespaces derive 

their initial contents, consists of all the object-level definitions previously discussed 

and, additionally, further definitions as described below. 

We will occasionally make reference to run-time errors signalled by certain func­

tions defined in the meta-namespace. Note that what we consider run-time when 

discussing meta programming features is compile-time from the standpoint of the ob­

ject program, during whose compilation the metaprogram will be executed. Thus 

all run-time errors in metaprogram execution will be reported during compilation 

of an object program that exercises the offending metaprogram code. 

7.9.1 Contours and environments 

Values of type environment represent the lexical (textual) context with respect to 

which expressions, types, and declarations are interpreted. In the base language, 

this context consists of a mapping from names to their referent entities; however, 
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other sorts of contextual information may be incorporated into the environment by 

type extension. We shall see an example of such an extension in Section 8.3. 

entity 
TYPE 

contour TYPE 

environment TYPE 

Values of type entity model compile-time properties of named entities, such 

as types and variables. The entity type is a union and may be extended us­

ing extend-union declarations. Initially, variants representing variables and type 

names exist, but are hidden from the user. Values of type environment are records, 

and may be extended using extend-record. Initially, environments contain a single 

hidden component representing a mapping from names (of type token) to entities. 

Values of type contour represent lexical binding contours, mappings from names 

to entities in which each bound name is associated with exactly one entity. To aug­

ment the bindings of an environment, a contour containing the new bindings is first 

constructed, then a new environment is created in which the contour is "nested" 

within the previous environment. The new bindings shadow any previous bindings 

of the same names. 

(empty-contour) contour 

(add-binding name: token entity: entity contour: contour) contour 

(bound-in-contour? name: token contour: contour) boolean 

The nullary function empty-contour returns a lexical binding contour con­

taining no bindings. The function add-binding creates a new contour differing 

from contour only in that the name name is bound the entity entity. A run­

time error is signalled if the name is already bound in the contour. The predicate 

bound-in-contour? tests whether a given name is bound in a contour. 

(empty-environment) environment 

(add-contour contour: contour env: environment) environment 

(bound-in-environment? name: token env: environment) boolean 

(binding name: token env: environment) entity 

The nullary function empty-environment returns an environment containing no 

bindings. The function add-contour augments the bindings of env with those of 

contour, in which new bindings shadow any existing bindings involving the same 

name. The predicate bound-in-environment? tests whether a given name is bound 

in an environment. The function binding retrieves the entity associated with the 

name name in the environment env, signalling a run-time error if no binding exists. 

• I 
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(current-environment) environment 

The nullary function current-environment returns the global environment of 

the object-level namespace of the current unit. Note that this function is only 

visible within the .unit's meta-namespace, so it is impossible for code executed at 

object-level to .have access to its own environment. 

(definition-environment) environment 

The special form definition-environment returns the value of 

(current-environment) at the time the form was compiled. It is used to cap­

ture a suitable environment for closing quasiquotations within syntax declarations. 

(merge-environments env1, env2: environment vars: list-of( token)) environment 

Yields an environment identical to env1 except that for every name in the list 

vars for which a binding exists in env2, the binding in the result is that from env2. 

This function is useful for constructing environments in which to partially close 

expressions that must be left open with respect to a specified list of names. The 

function close-expr, defined below, partially closes the unclosed expression exp 

(of type •expr) in the environment denv, allowing it to capture the names vars in 

the context of use. 

(meta-define 
(fun [close-expr ([exp •expr] 

[denv environment] 
[vars (list-of token)]) •expr 

(lambda ([env environment]) 
(exp (merge-environments denv env vars)))])) 

The function close-expr, as well as similar functions for declarations and types, 

are predefined in XL, and will be described in the sequeL 

7 .9.2 Expressions 

Values of type expression denote fully type-checked expressions in which all free 

identifiers have been resolved and all semantic attributes computed. Values of type 

•expr are functions from an environment to an expression. · 

expression TYPE 

( expr-type expr: expression) description 

The type expression is a record type, with no fields initially visible. The function 

expr-type is provided to query the type attribute of an expression. Note that if 
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this component were made directly visible, it would be possible to subvert the type­

checking mechanism by altering the type component indiscriminately with update. 8 

(name->•expr name: token) *expr 

(number->•expr number: integer) *expr 

(character->•expr char: character) *expr 

(string->•expr string: string) *expr 

(boolean->•expr boolean: boolean) *expr 

(token->•expr token:token) *expr 

These functions effectively "unquote" values of the atomic phyla. That is, they 

return the semantic value that an expression consisting of an atomic phylum in­

stance would have, given that the instance had the specified value. 

(close-expr expr: *expr env: environment vars: list-of( token)) *expr 

(close-expr-list expr: list-of(*expr) env: environment vars: list-of( token)) 
list-of(*expr) 

The function close-expr partially closes an expression in a given environment, 

leaving it open with respect to the variables enumerated in vars. The function 

close-expr-list just maps close-expr over a list of •expr values. 

7.10 Declarations 

Values of type declaration are functions from an unclosed expression of type •expr · 

to a closed expression of type expression. 

declaration TYPE 

(close-decl decl: *decl env: environment vars: list-of( token)) *decl 

(close-decl-list decl: list-of(*decl) env: environment vars: list-of( token)) 
list -of(* decl) 

The function close-decl partially closes a declaration in a given environment, 

leaving it open with respect to the variables enumerated in vars. The function 

close-decl-list just maps close-decl over a list of •decl values. 

8The present implementation, for historical reasons, implements the expression type as a ground 

type, not an extensible record, precluding further extension of the set of expression attributes. 
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7.10.1 Types 

Types impose an interpretation on expressions, restricting the contexts in which 

they can occur to those operations that are prepared to operate meaningfully upon 

them. Additionally, they serve as repositories for compile-time properties of expres­

sion values, such as their "shapes" as data structures. 

Because of the use of the '~rord "type" in connection with the phylum TYPE, we 

call the reduced semantic value of that phylum by the name description. Values 

of (meta-) type description designate the types of expressions belonging to the 

object level. 

description TYPE 

void -type description 

integer-type description 

character-type description 

string-type description 

boolean-type description 

token-type description 

entity-type description 

contour-type description 

environment-type description 

expression-type description 

description-type description 

The ground types are made available via variables for convenience, though they 

would otherwise still be accessible via quasiquotation. 

(equiv-types? t1: description t2: description) 

Return true if types t1 and t2 are equivalent, else return false. 

(void-type? ty: description) 

(integer-type? ty: description) 

(character-type? ty: description) 

(string-type? ty: description) 

(boolean-type? ty: description) 

(token-type? ty: description) 

(entity-type? ty: description) 

(contour-type? ty: description) 

(environment-type? ty: description) 

(expression-type? ty: description) 

boolean 

boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
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(description-type? ty: description) boolean 

(function-type? ty: description) boolean 

(function-type-argtypes ty: description) list-of( description) 

(function-type-resul ttype ty: description) description 

(reference-type? ty: description) boolean 

(reference-type-basetype ty: description) description 

(vector-type? ty: description) boolean 

(vector-type-elttype ty: description) description 

(list-type? ty: description) boolean 

(list-type-el ttype ty: description) description 

(tuple-type? ty: description) boolean 

( tuple-type-el ttypes ty: description) list-of( description) 

(record-type? ty: description) boolean 

(record-type-fieldnames ty: description) list-of( token) 

(record-type-fieldtypes ty: description) list-of( description) 

(union-type? ty:description) boolean 

( union-type-varnames ty: description) list-of( token) 

( union-type-vartypes ty: description) list-of( description) 

(option-type? ty: description) boolean 

(option-type-basetype ty: description) description 

The predicates type-type? test the type for membership in the type or family 

of constructed types indicated. Operations for extracting the attributes of each 

constructed type are provided. The description values associated with these type 

can be constructed using quasiquotation, so functions are not provided for this 

purpose. Note that the attributes of record and union types refer to the components 

or variants visible. Other equivalent descriptions may have more or fewer visible 

components. 

(new-type attrty: TYPE equiv ~: EXPR print: EXPR) EXPR 

Introduces a new class of constructed types. The type attrty is the type of 

a value that represents the attributes of the types that are instances of the new 

constructed type, e.g. the element type of a vector type or the component names 

and types of a record type. The expression equiv'l must be a predicate on two 

arguments of type attrty that returns true if the types possessing those attributes 

are to be considered equivalent. For example, for a record type, it might check 

that corresponding field types are equivalent. The expression print must denote 

a function from one argument of type attrty to a result of type void, and should 

display a suitable printed representation of the type when invoked. This function 

is used by the command interpreter when displaying the type of a value of the new 

type. (There is unfortunately no way in XL to specify a display function for the 
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values themselves.) 
The result is a tuple of five functions: create, test, attributes, seal, and unseal. 

The names are shown in italics to indicate that they are for documentation purposes 

only, and in fact are anonymous functional values. 

(create refines: description attrs: attrty) description 

(test ty: description) boolean 

(attributes ty: description) attrty 

(seal exp: expression attrs: attrty) expressiOn 

(unseal exp: expression) expression 

The function create creates a new instance type of the constructed type, whose 

instances are to be represented by objects of the type refines. The predicate test 

returns true if its argument was created by a call to create. The function attributes 

recovers the attribute value passed to create. It is a run-time error to invoke at­

tributes on a type not produced by create. 

Two types created by user-defined constructors are equivalent if and only if 

they were created by the same create function, yield true when passed to the equiv? 

function, and were refined from equivalent types. In this way, creation of new types 

can add further constraint to the usage of a type, but cannot remove constraints 

imposed by the type in terms of which it is defined, i.e. refines. 

In order to allow manipulation of values of user-defined types, XL provides a 

type-safe means for viewing these values as instances of the type in terms of which 

the user-defined type was defined. The function seal maps an expression to an 

otherwise identical expression in which the type has been replaced by a refinement of 

its prior type using create with the given attribute value. The function unseal strips 

off one such refinement and returns the modified expression. Thus for any expression 

e and attribute a, (unseal (seal e a)) = e, and (expr-type (unseal (seal e a))) 

= (expr-type e). 

(name->•type name: token) *type 

Unquote a token as a type name, that is, return a •type that when applied to 

an environment returns the type value associated with name. 

(close-type type: *type env: environment vars: list-of( token)) *type 

(close-type-list type: list-of(*type) env: environment vars: list-of( token)) 
list-of( *type) 

The function close-type partially closes a type in a given environment, leav­

ing it open with respect to the variables enumerated in vars. The function 

close-type-list just maps close-type over a list of •type values. 



44 SE!IIANTICALLY-SENSITNE MACROPROCESSING 

7.10.2 Miscellaneous 

(write-char ch:character) ·void 

(write-string str: string) void 

(write-integer int:integer) void 

(write-description desc: description) void 

Writes an object of the given type to the terminal. The function 

write-description is particularly useful in writing display functions for new types. 

(error msg: string) void 

(type-error expect: description found: description msg: string) void 

When executed, error causes an error message to be generated on the interactive 

display. The error message includes the given string msg, as well as an indication 

of the phylum and form associated with the most recent functional semantic value 

invoked. Note that error contexts follow dynamic, not lexical, seeping rules. 

The type-error function produces a somewhat more informative error message 

for situations in which a particular type is expected and another one is found. The 

message string in this case is appended to "Type mismatch " for display. 

8 Using semantic macros 

To demonstrate the utility of semantic macros, we present four illustrative examples. 

While the semantic macro facility can be used in casual, ad-hoc ways specific to an 

application program, these examples all represent significant language extensions of 

the type that would compose an extension library. Each is intended to serve as an 

exemplar of a larger family of related definitions illustrating the metaprogramming 

techniques involved. 

The first example is a definition of a record type with named components, im­

plemented as a refinement of the built-in tuple type. The second example is a 

control structure in which user-defined actions are performed upon the transitions 

of a finite state machine. The third example implements an iterator data type 

and its associated control structure. The fourth and final example is perhaps the 

most interesting, introducing a new named entity: a handle providing access to a 

cached resource over a region of the program where the resource is guaranteed to 

be in a consistent state. This example shows most clearly how type-specific special 

forms can be used to maintain program invariants that cannot be guaranteed when 

ordinary functions are used to provide ADT operations. 
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8.1 A heterogeneous data type 

In this section, we present the complete XL definition of the data type generator 

structure-of, defining a family of types called structures whose values are het­

erogeneous tuples of named components. Unlike the built-in tuple type, structure 

components have symbolic labels, and unlike the built-in record type, structures 

obey a structural type-equivalence rule. Two structure types are considered equiv­

alent if they possess the same number of fields, with the same names, in the same 

order, and of pairwise equivalent types. 

In the example below, we define a type representing a point in planar Carte­

sian coordinates and a function computing the point at a specified distance above 

another. 

(define 
(type 

(val 

(fun 

[point (structure [x integer] [y integer])]) 

[my-position (make-structure [x 10] [y 15])]) 

[move-up ([start point] [distance integer]) point 

(make-structure [x (structure-ref x start)] 
[y (+ (structure-ref y start) distance)])])) 

We begin the definition with a type struct-attr, the values of which will repre­

sent the compile-time attributes of the generated structure types. These attributes 

consist of a list of token values designating the component names, and a parallel 

list of description values designating their corresponding types. We also define a 

few auxiliary functions to make manipulations of the struct-attr tuples a little 

more perspicuous. 

(meta-define 
(type 

(fun 

[fieldnames (list-of token)] 

[fieldtypes (list-of description)] 

[struct-attr (tuple-of fieldnames fieldtypes)]) 

[make-struct-attr ([fn fieldnames] [ft fieldtypes]) struct-attr 

(make-tuple fn ft)] 
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[get-fieldnames ([a struct-attr]) fieldnames 

(tuple-ref 0 a)] 

[get-fieldtypes ([a struct-attr]) fieldtypes 

(tuple-ref 1 a)])) 

We must define the type equivalence predicate on structure types as a predicate 

on their associated struct-attr values. \Ve require that corresponding fields have 

the same name and equivalent types. We also provide a display function that will 

be used by the XL system when displaying the new type, e.g. when reporting the 

type of an object displayed by the eval command. 

(meta-define 
(fun [struct-equiv? ([al struct-attr] [a2 struct-attr]) boolean 

(let ((fun [eq-aux ([fnl fieldnames] [fn2 fieldnames] 
[ftl fieldtypes] [ft2 fieldtypes]) boolean 

(if (null? fnl) 
(null? fn2) 

(if (null? fn2) 
#f 

(and (eq? (car fnl) (car fn2)) 
(equiv-types? (car ftl) (car ft2)) 

(eq-aux (cdr fnl) (cdr fn2) 
(cdr ftl) (cdr ft2)))))])) 

(eq-aux (get-fieldnames al) (get-fieldnames a2) 

(get-fieldtypes al) (get-fieldtypes a2)))]) 

(fun [~_truct-print ([a struct-attr]) void 

(let ((fun [tp-aux ([fn fieldnames] [ft fieldtypes]) void 

(unless (null? fn) 
(vrite-string " [") 
(vrite-string (token->string (car fn))) 

(vrite-string " 11
) 

(vrite-description (car ft)) 
(vrite-string "]") 
(tp-aux (cdr fn) (cdr ft)))])) 

(write-string "(STRUCTURE-OF") 
(tp-aux (get-fieldnames a) (get-fieldtypes a)) 

(vrite-string ")"))])) 

We now invoke nev-type to create the set of functions needed to create and 

use type descriptors for structure types. This action also "registers" the above def­

initions with the XL type-checker, which can now type-check function applications 

and other generic operations involving the values of structure types. 
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(meta-define 
(val 

[nevtype (ne~-type struct-attr struct-equiv? struct-print)]) 

(val 
[make-struct-type 
[struct-type? 
[struct-attributes 
[struct-seal 
[struct-unseal 

(tuple-ref 0 ne~type)] 
(tuple-ref 1 ne~type)] 
(tuple-ref 2 ne~type)] 
(tuple-ref 3 ne~type)] 
(tuple-ref 4 ne~type)])) 
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The structure type constructor structure-of requires an auxiliary phylum to 

represent the list of fields. The semantic value of this phylum is a tuple of two 

parallel lists giving their names and types. 

(meta-define 
(type 

(fun 

[•struct-field (tuple-of token •type)] 

[struct-field-list (list-of •struct-field)]) 

[make-struct-field ([fn token] [ft •type]) •struct-field 

(make-tuple fn ft)] 

[struct-field-name ([sf *struct-field]) token 

(tuple-ref 0 sf)] 

[struct-field-type ([sf •struct-field]) •type 

(tuple-ref 1 sf)])) 

(phylum STRUCT-FIELD •struct-field) 

(syntax STRUCT-FIELD [ [fieldname NAME] [fieldtype TYPE] ] 

(make-struct-field fieldname fieldtype)) 

With these preliminaries out of the way, we can now define the structure type 

constructor itself. 

(syntax TYPE (structure-of t [fields STRUCT-FIELD]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((fun [mkfields ([fields struct-field-list] 

[fnames fieldnames] 
[ftypes fieldtypes]) description 
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(if (null? fields) 
(make-struct-type 

((TYPE (tuple-of ~~(reverse ftypes))) denv) 

(make-struct-attr (reverse fnames) 
(reverse ftypes))) 

(let ((val [f (car fields)]) 
(val [fname (struct-field-name f)] 

[ftype ((struct-field-type f) env)])) 

(mkfields (cdr fields) 
(cons fname fnames) 
(cons ftype ftypes))))])) 

(mkfields fields (empty-list fieldnames) (empty-list fieldtypes)))))) 

To create values of a structure type, we introduce a structure value constructor 

make-structure. Given a list of field names and values, this form yields a value of 

the appropriate structure type with the indicated field names and values. Again, 

we need some preliminary definitions, this time for the list of component values and 

their names. 

(meta-define 
(type 

(fun 

[•struct-init (tuple-of token •expr)] 

[struct-init-list (list-of •struct-init)]) 

[make-struct-init ([fn token] [fi •expr]) •struct-init 

(make-tuple fn fi)] 

[struct-init-name ([si •struct-init]) token 

(tuple-ref 0 si)] 

[struct-init-expr ([si •struct-init]) •expr 

(tuple-ref 1 si)])) 

(phylum STRUCT-INIT •struct-init) 

(syntax STRUCT-INIT [ [fieldname NAME] [fieldval EXPR] ] 

(make-struct-init fieldname fieldval)) 

Structure values are represented as tuples. The function struct-seal, obtained 

from the call to new-type, labels the tuple-valued expression representing the struc­

ture value as possessing a structure type 'vith the indicated attributes. 
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(syntax EXPR (make-structure & [fields STRUCT-INIT]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((fun [dofields ([f struct-init-list] 

[fnames (list-of toker)] 
[fvals (list-of expression)] 

[ftypes (list-of description)]) expression 

(if (null? f) 
(struct-seal 

((EXPR (make-tuple ~~(reverse fvals))) denv) 

(make-struct-attr (reverse fnames) 
(reverse ftypes))) 

(let ((val [fname (struct-init-name (car f))] 
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[fval ((struct-init-expr (car f)) env)]) 

(val [ftype (expr-type fval)])) 

(dofields (cdr f) 
(cons fname fnames) 
(cons fval fvals) 
(cons ftype ftypes))))])) 

(dofields fields 
(empty-list token) 
(empty-list expression) 
(empty-list description)))))) 

The structure reference operator unseals the structure-valued expression with 

struct-unseal, revealing the underlying tuple value, and uses the structure field 

name list to determine which tuple element to select. 

(meta-define 
(fun [field-index ([fn token] [rt description]) integer 

(let ((fun [f-i-aux ([idx integer] [fnames fieldnames]) integer 

(begin 
(vhen (null? fnames) 

(error (string-append 
11 Attempt to select nonexistent field - 11 

(token->string fn)))) 

(if (eq? fn (car fnames)) 
idx 

(f-i-aux (+ idx 1) (cdr fnames))))])) 

(f-i-aux 0 (get-fieldnames (struct-attributes rt))))])) 
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(syntax EXPR (structure-ref [fn NAME] [structval EXPR]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [sval (structval env)]) 

(val [stype (expr-type sval)])) 

(unless (struct-type? stype) 

(error "Attempt to apply STRUCTURE-REF to non-structure")) 

((EXPR (tuple-ref ,(field-index fn stype) 
,,(struct-unseal sval))) denv))))) 

This completes the definition of structure types. A completely satisfactory 

definition would encapsulate . the various auxiliary definitions, particularly the 

struct-seal and struct-unseal functions. We wish only to augment the ex­

isting phyla TYPE and EXPR. As remarked earlier, however, XL in its present form 

does not address modularity concerns. 

8.2 A fancy control structure 

Finite state machines (FSMs) are a convenient means to express many computa­

tions. In this example, we implement a control structure in which user-defined 

actions, represented by arbitrary XL expressions, may be executed as transitions 

are taken along the arcs of an FSM. The FSM is specified by a straightforward 

enumeration of its states, its arcs, and the labels and actions associated with the 

arcs. For example, the following FSM recognizes strings over the alphabet {a, b, c} 

matching the regular expression ab*c, where the functions succeed and fail signal 

success and failure respectively: 

(fsm character char=? s1 next-char 

(s1 
((#\a) s2) 

((#\b #\c) (exit) (fail))) 

(s2 
((#\b) s2) 
((#\a) (exit) (fail)) 
((#\c) (exit) (succeed)))) 

The first line indicates that the arc labels are of type character, for which 

char=? is to be used as the equality predicate, that the initial state is s1, and that 

the nullary function next-char (not defined here) fetches successive characters from 

the input stream. The form (exit) denotes a distinguished final state, a transition 

to which causes the FS:rvl to exit returning the value *void*. Multiple actions are 

permitted, in which case they form an implicit begin. All actions must have type 
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void. A run-time error will be reported if there is no valid transition for the current 

state and input symbol. 

Our implementation strategy will be to translate the FSM into a set of mutually 

tail-recursive functions, one for each state, as shown below: 

(let ((val [%next (next-symbol}] 
[%eqpred (equality-predicate}]) 

(fun [(state-name} ([%item (symbol-type}]) void 

(if (or C%eqpred %item (label)) ... more labels ... ) 

(begin (arc-action) ... (go-next)) 
(if . . . more arcs .. . 

(error "No applicable FSM transition")))] 

more states ... ) ) 
((start-state) (%next))) 

where (go-next) is "((next-state) (%next))" for a named state, or "*void*" for an 

(exit). It is apparent from this translation scheme that the arc labels will be tested 

in sequential order. While the user should be discouraged from using expressions 

other than literals as arc labels, to require this within the existing framework would 

restrict the symbol type to one of the built-in types for which literals are defined. 9 

We will avoid inadvertent capture of names appearing free in the arc actions 

by closing each action expression in the proper environment. We must be careful, 

however, that state names in the macro expansion do not conflict with the various 

names prefixed with "%" above. Our strategy will be to map each user-supplied 

state name to a newly-created unique token. The mapping process will also provide 

a convenient way to check that there are no duplicate state labels, and that every 

label appearing as the next state in an arc is in fact the label of some state. A 

tokenmap is a function that when applied to a token from yields an option which 

contains the token to to which it maps, or is empty if no mapping is defined. The 

function map-token takes a token map and a new pair of tokens from and to and 

returns an updated map. 

(meta-define 
(type 

[tokenmap (fun (token) (option-of token))]) 

(val 
[empty-map (lambda ([tok token]) (empty-option token))]) 

9To avoid this difficulty would require introducing a distinction, not made in XL, between static 

(compile-time) and non-static (run-time) expressions. 
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(fun 
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[map-token ([from token] [to token] [tmap tokenmap]) tokenmap 

(lambda ([tok token]) 
(if (eq? tok from) (make-option to) (tmap tok)))])) 

The arc labels are a list of expressions of the FSM symbol type. The semantic 

value for the ARC-LABELS phylum takes the environment in which the labels are to 

be evaluated and the FSM symbol type and returns an expression which evaluates 

to #t at run-time if any of the arc labels match the input. 

(phylum ARC-LABELS (fun (environment description) •expr)) 

(syntax ARC-LABELS (t [labels EXPR]) 

(lambda ([env environment] 
[symty description]) 

(let ((fun [loop ([labs (list-of •expr)] 
[tests (list-of •expr)]) •expr 

(if (null? labs) 
(EXPR (or ~(reverse tests))) 
(let ((val [sym ((car labs) env)])) 

(unless (equiv-types? symty (expr-type sym)) 

(type-error symty (expr-type sym) "in FSM arc label")) 

(loop (cdr labs) 
(cons (EXPR (%eqpred %item ,,sym)) tests))))])) 

(loop labels (empty-list •expr))))) 

Each arc specifies a next state, which is eithe1· a state name or the distinguished 

final state (exit). Note the use of srnap, the state map. 

(phylum FSM-NEXTSTATE (fun (tokenmap) •expr)) 

(atom-syntax FSM-NEXTSTATE [state NAME] 

(lambda ([smap tokenmap]) 
(let ((val [ostate (smap state)])) 

(when (empty? ostate) 
(error 
(string-append "Undefined next FSM state - 11 (token->string state)))) 

(EXPR (,(name->•expr (value ostate)) (%next)))))) 

(syntax FSM-NEXTSTATE (exit) 

(lambda ([smap tokenmap]) 
(EXPR •void*))) 
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The semantic value for phylum FSM-ARC takes an environment in which the 

state labels and actions are to be closed, a state map, and the symbol type, and 

yields a "wrapper" function which will later generate the code for the arc. The 

wrapper will generate the expression 

(if (or (eq? ... ) ... ) (begin actions ... ) alt) 

when applied to an expression alt. The wrappers for each state will be composed 

to generate the body of the state's transition function. 

(meta-define 
(type 

[arc-wrapper (fun (•expr) •expr)] 

[•fsm-arc (fun (environment tokenmap description) arc-wrapper)])) 

(phylum FSM-ARC *fsm-arc) 

(syntax FSM-ARC ([labels ARC-LABELS] [nstate FSM-NEXTSTATE] t [actions EXPR]) 

(lambda ([env environment] 
[smap tokenmap] 
[symty description]) 

(let ((val [test (labels env symty)]) 

(fun [do-arcs ([actions (list-of •expr)] 
[actcode (list-of expression)]) •expr 

(if (null? actions) 
(EXPR (begin ~~(reverse actcode) ,(nstate smap))) 

(let ((val [action ((car actions) env)])) 

(unless (equiv-types? void-type (expr-type action)) 

(error "FSM arc action must yield VOID")) 

(do-arcs (cdr actions) (cons action actcode))))])) 

(lambda ([alt •expr]) 
(EXPR (if ,test ,(do-arcs actions (empty-list expression)) ,alt)))))) 

The semantic value for phylum FSM-STATE takes the environment and symbol 

type as before, to be passed on to FSM-ARC. A pair of values is returned: the state 

label and a suspension, a function of type stategen, that completes the processing 

of the state when applied to a state map. This suspension is necessary because we 

must collect all of the labels and build the state map before generating any of the 

functions for the states. 
Suspensions are a standard trick in XL metaprogramming for cases in which 

insufficient information is available when needed -just abstract the offending ex­

pression with respect to the unknown variables and pass it on until the information 
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becomes available. This technique can be used in many cases where it might appear 

at first glance that multiple passes are required. 

(meta-define 
(type 

[stategen (fun (tokenmap) *funbind)] 

[•fsm-state (fun (environment description) (tuple-of token stategen))]))_ 

(phylum FSM-STATE *fsm-state) 

(syntax FSM-STATE ([label NAME] & [arcs FSM-ARC]) 

(lambda ([env environment] 
[symty description]) 

(make-tuple 
label 
(lambda ([smap tokenmap]) 

(let ((fun [do-arcs ([arcs (list-of *fsm-arc)]) •expr 

(if (null? arcs) 
(EXPR (error 11 No applicable FSM transition11

)) 

(((car arcs) env smap symty) (do-arcs (cdr arcs))))])) 

(let ((val [state (value (smap label))])) 

(FUNBIND [,state ([%item ,,symty]) void 
,(do-arcs arcs default)]))))))) 

The processing required for the top-level FSM form itself is rather involved, so 

we factor out a pair of auxiliary functions. The function collect-states processes 

a list of FSM-STATE instances to obtain a list of the stategen functions. It also 

constructs a state map in which each FSM state label is mapped to a unique new 

token, and checks for duplicate state labels. The function check-types verifies that 

the types of the equality predicate and the next symbol function are correct given 

the symbol type. 

(meta-define 
(fun [collect-states ([states (list-of *fsm-state)] 

[env environment] 
[symty description]) 

(tuple-of (list-of stategen) tokenmap) 

(let ((fun [loop ([states (list-of *fsm-state)] 

[smap tokenmap] 
[genfns (list-of stategen)]) 

(tuple-of (list-of stategen) tokenmap) 
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(if (null? states) 
(make-tuple genfns smap) 
(let ((val [state ((car states) env symty)]) 

(val [label (tuple-ref 0 state)] 

[genfn (tuple-ref 1 state)])) 

(unless (empty? (smap label)) 
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(error (string-append "Duplicate FSM state - " 
(token->string label)))) 

(loop (cdr states) 
(map-token label (generate-token "S") smap) 

(cons genfn genfns))))])) 

(loop states empty-map (empty-list stategen)))])) 

(meta-define 
(fun [check-types ([stype description] 

[eqpred expression] 
[next expression] 
[denv environment]) void 

(let ((val [eqpred-type ((TYPE (fun (,,stype ,,stype) boolean)) denv)] 

[next-type ((TYPE (fun() ,,stype)) denv)])) 

(unless (equiv-types? eqpred-type (expr-type eqpred)) 

(type-error eqpred-type (expr-type eqpred) 

"in FSM equality predicate")) 

(unless (equiv-types? next-type (expr-type next)) 

(type-error next-type (expr-type next) 
"in FSM next-token function")))])) 

The fsm construct first verifies that the equality predicate equalp and the next 

symbol function getnext agree with the declared symbol type symtype. The states 

are then processed, by collect-states to accumulate the stategen functions and 

the state map. Each stategen function is then invoked to yield the code for each 

state, and the resulting function bindings are incorporated into a let form binding 

the equality predicate and next symbol functions, and invoking the start state's 

transition function. 

(syntax EXPR (fsm [symtype TYPE] [equalp EXPR] 
[start NAME] [getnext EXPR] & [states FSM-STATE]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [stype (symtype env)]) 

(val [eqpred (equalp env)]) 
(val [next (getnext env)])) 
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(check-types stype eqpred next denv) 
(let ((val [stateinfo (collect-states states env stype)]) 

(val [genfuns (tuple-ref 0 stateinfo)] 
[statemap (tuple-ref 1 stateinfo)]) 

(fun [loop ([genfns (list-of stategen)] 
[fbinds (list-of. *funbind)]) expression 

(if (null? genfns) 
(let ((val [estate (statemap start)])) 

(vhen (empty? estate) 
(error (string-append "Invalid FSM start state 

(token->string start)))) 

((EXPR (let ((val [%next ,,next] 

denv)) 

[%eqpred ,,eqpred]) 
(fun ~(reverse fbinds))) 

(,(name->•expr (value ostate))(%next)))) 

(loop (cdr genfns) 
(cons ((car genfns) statemap) fbinds)))])) 

(loop genfur~ (empty-list *funbind))))))) 

8.3 Iterators 

An iterator is a function-like object that yields not a single value, but a sequence 

of values generated on demand. Our formulation of iterators follows roughly that 

of CLU [15). 
An iterator is constructed with the i terator special form. The argument list 

is identical in form to that of a lambda expression, but the result type must be 

explicitly indicated. The body of an iterator is an expression of type void. The 

body returns each value with the yield form, which may appear only within an 

iterator. To terminate the sequence of values, the body returns normally. An 

iterator is invoked with the :for-each form, which repeatedly evaluates its body 

with successive values yielded by the iterator bound to a variable. 

A simple use of iterators mimics the Pascal :for loop: 

(define 
(val [up-to (iterator ([start integer] [end integer]) integer 

(let ((fun [loop ([i integer]) void 
(unless (> i end) 

(yield i) 
(loop (+ i 1)))])) 

(loop start)))])) 

- II 
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The iterator call 

(for-each x (up-to 1 5) 
(begin 

(write-integer x) 
(write-string " "))) 
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displays "1 2 3 4 5 ". A more unusual iterator enumerates the characters of a 

string in left-to-right order: 

(define 
(val [in-string (iterator ([str string]) character 

(let ((val [strlen (string-length str)]) 

(fun [loop ([i integer]) void 
(when (< i strlen) 

(loop 0)))])) 

The invocation 

(for-each x (in-string "foobar") 

(begin 
(write-char x) 
(write-string " "))) 

(yield (string-ref str i)) 
(loop (+ i 1)))])) 

displays "f o o b a r ". More exotic applications include traversals of trees and 

other complex data structures. Iterators allow an abstract treatment of iteration 

over the components of an abstract data type, permitting us to hide its representa­

tion. They also allow us to represent "infinite" sequences as manipulable data. 

Our strategy for compiling iterators is to represent them as functions taking an 

extra hidden functional argument. When the iterator is called, the body of the 

for-each will be abstracted with respect to the bound variable and supplied as 

the value of this parameter. To yield a value, the iterator need only invoke this 

function. The following transformations illustrate the method: 

(iterator C(args) ... ) (resulttype) 
... (yield (result)) ... ) 

:::::::;. 

(lambda ([%yield (fun C(resulttype)) void)] (args) ... ) 

. . . (%yield (result)) ... ) 

(for-each (var) C(iter-exp) (args) ... ) (body)) 

:::::::;. 

C(iter-exp) (lambda ( [(var) (resulttype)]) (body)) (args) ... ) 
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In the actual expansion, a unique token generated by generate-token will replace 

the name %yield above to prevent naming conflicts. 

We begin the definition of iterators with the type iter, analogous to the fun 

type possessed by functions. The attributes of an iterator type include its result 

type and the types of its arguments. 

(meta-define 
(type 

[iter-attrs (structure-of [restype description] 
[argtypes (list-of description)])])) 

Two iterator types are equivalent if their result types are equivalent and if the 

types of corresponding arguments are equivalent. 

(meta-define 
(fun 

[iter-equiv? ([al iter-attrs] [a2 iter-attrs]) boolean 

(let ((fun [eq-aux ([atsl (list-of description)] 
[ats2 (list-of description)]) boolean 

(if (null? atsl) 
(null? ats2) 
(if (null? ats2) 

#f 
(and (equiv-types? (car atsl) (car ats2)) 

(eq-aux (cdr ats1) (cdr ats2)))))])) 

(and (eq-aux (structure-ref argtypes ai) 
(structure-ref argtypes a2)) 

(equiv-types? (structure-ref restype al) 
(structure-ref restype a2))))])) 

As for any new type, we need a function that prints a human-readable rep­

resentation of the type desCI'iptor. Iterator types are displayed in the form 

(iter ( argtype.s . .. ) re.sulttype). 

(meta-define 
(fun 

[iter-print ([a iter-attrs]) void 
(let ((fun [ip-aux ([ats (list-of description)]) void 

(unless (null? ats) 
(write-description (car ats)) 

(unless (null? (cdr ats)) 
(write-string 11 11

)) 

(ip-aux (cdr ats)))])) 
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(vrite-string "(ITER (") 
(ip-aux (structure-ref argtypes a)) 

(vrite-string ") ") 
(vrite-description (structure-ref restype a)) 

(vrite-string ")"))])) 
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We now invoke new-type to create the .new type constructor and its operations. 

(meta-define 
(val 

[nevtype (nev-type iter-attrs iter-equiv? iter-print)]) 

(val 
[iter-create 
[iter-type? 
[iter-attributes 
[iter-seal 
[iter-unseal 

(tuple-ref 0 nevtype)] 
(tuple-ref 1 nevtype)] 
(tuple-ref 2 nevtype)] 
(tuple-ref 3 nevtype)] 
(tuple•ref 4 nevtype)])) 

The yield form, permitted only within the body of an i terator construct, 

must have some way to determine its context. All communication between distinct 

EXPRs must take place via the environment. Vve extend the type environment, an 

extensible record type, to include a new component iter-yield. In an environ­

ment representing the context within an iterator body, this component, an option, 

will be non-empty and will have a value of type token. This token is the name of 

the function that the expansion of yield will call to return a value from the iter­

ator. We hide the representation of iterator contexts with the auxiliary functions 

yield-context and yield-function, which update and query environments in a 

style compatible with the primitives for accessing their bindings component. 

(meta-define 
(type [iter-body-env 

(extend-record environment [iter-yield (empty-option token)])]) 

(fun [yield-context ([yname token] [env environment]) environment 

(update iter-body-env env [iter-yield (make-option yname)])] 

[yield-function ([env environment]) (option-of token) 

(select iter-body-env iter-yield env)])) 

The iterator type constructor iter offers no surprises. 
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(meta-define 
(type [*it-type-list (fun (environment) (list-of description))])) 

(phylum IT-TYPE-LIST •it-type-list) 

(syntax IT-TYPE-LIST (& [types TYPE]) 

(lambda ([env environment]) 
(let ((f~ [loop ([itypes (list-of •type)] 

[descrs (list-of description)]) 

(list-of description) 
(if (null? itypes) 

(reverse descrs) 
(loop (cdr itypes) 

(cons ((car itypes) env) descrs)))])) 

(loop types (empty-list description))))) 

(syntax TYPE (iter [argty IT-TYPE-LIST] [resty TYPE]) 

(let .((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [argtypes (argty env)] 

[restype (resty env)]) 
(val [refines ((TYPE (fun (,,restype ~~argtypes) void)) denv)] 

[attr (make-structure [restype restype] 
[argtypes argtypes])])) 

(iter-create refines attr))))) 

The parameters of the i terator form are represented by the phyla IPARM and 

IPARM-LIST. No semantic processing is done at this time. We just collect the 

parameter names and types for later examination. 

(meta-define (type [•iparm (tuple-of token •type)])) 

(phylum IPARM •iparm) 

(syntax IPARM [ [n NAME] [t TYPE] ] (make-tuple n t)) 

(phylum IPARM-LIST (list-of *iparm)) 

(syntax IPARM-LIST (& [ip-IPARM]) ip) 

We must verify that parameter names are not duplicated in iterator parameter 

lists. The function member? tests a token for membership in a list of tokens. 
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(meta-define 
(fun [member? ([tok token] [1st (list-of token)]) boolean 

(if (null? 1st) 
#f 
(if (eq? tok (car 1st)) 

#t 

(member? tok (cdr 1st))))])) 
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The auxiliary function make-fparm-list processes a list of iterator parameters, 

constructing the list of parameters for the lambda expression and checking for du­

plicate parameter names. The parameter types are closed in the given environment. 

(meta-define 
(fun [make-fparm-list ([env environment] 

[iparms (list-of •iparm)] 
rpnames (list-of token)] 
[fparms (list-of •fparm)] 
[itypes (list-of description)]) 

(tuple-of (list-of •fparm) 
(list-of token) 
(list-of description)) 

(if (null? iparms) 
(make-tuple (reverse fparms) (reverse pnames) (reverse itypes)) 

(let ((val [iname (tuple-ref 0 (car iparms))] 

[itype ((tuple-ref 1 (car iparms)) env)])) 

(vhen (member? iname pnames) 
(error (string-append 

"Duplicate name in iterator parameter list 

(token->string iname)))) 

(let ((val [fparm (FPARM [,iname ,,itype])])) 

(make-fparm-list env 
(cdr iparms) 
(cons iname pnames) 
(cons fparm fparms) 
(cons itype itypes)))))])) 

- II 

Most of the i terator definition is straightforward, passing the buck to 

make-fparm-list. The construction of the environment for the iterator body is 

somewhat tricky, however. A name yname is invented to represent the yield func­

tion, i.e. the first parameter of the lambda expression comprising the expansion. 

We capture the expansion-time environment inside that lambda expression with 

the form "(lambda ( [e .. .] ) ... ) ." This environment is then augmented with 
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the yield context, indicating the yield function to be used, before being passed to 

the body. Note that it would not have been correct to simply replace "denv" with 

"(yield-context yname env) ," as "*void*" would then be closed in the wrong 

environment. Observe also that the types appearing within fparms have already 

been reduced, otherwise they would also be closed incorrectly. 

(syntax EXPR (iterator [parms IPARM-LIST] [rtype TYPE] [body EXPR]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [resty (rtype env)]) 

(val [ytype ((TYPE (fun (,,resty) void)) denv)]) 

(val [ptemp (make-fparm-list 
env parms (empty-list token) 
(empty-list *fparm) (empty-list description))]) 

(val [fparms (tuple-ref 0 ptemp)] 
[fnames (tuple-ref 1 ptemp)] 
[ftypes (tuple-ref 2 ptemp)]) 

(val [yname (generate-token "YIELD")])) 

(iter-seal ((EXPR (lambda ([,yname ,,ytype] Cfparms) 

,(lambda ([e environment]) 

denv) 

(body (yield-context yname e))) 

•void•)) 

(make-structure [restype resty] 
[argtypes ftypes])))))) 

The yield form simply invokes the yield function indicated by the current yield 

context, or reports an error if the context is empty. 

(syntax EXPR (yield [e expr]) 
(lambda ([env environment]) 

(let ((val [yield (yield-function env)])) 

(when (empty? yield) 
(error "YIELD not inside ITERATDR")) 

((EXPR (,(name->•expr (value yield)) ,,(e env))) env)))) 

The for-each form just passes on the bound variable and body to the semantic 

value of the iterator call, a subform of the for-each. Most of the work here is 

collecting and closing (reducing) the argument expressionso Note the use of the 

same trick seen in i terator to capture the expansion-time environment after it has 

been augmented with additional bindings in the expansion. Here we check that the 

for-each body, evaluated in the context of the bound variable var, has type void. 
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(phylum ITER-CALL (fun (environment token *expr) expression)) 

(syntax ITER-CALL ([iter EXPR] & [args EXPR]) 

(lambda ([env environment] [var token] [body *expr]) 

(let ((fun [do-args ([argexprs (list-of *expr)] 
[argparms (list-of expression)] 
[argtypes (list-of description)]) 

(list-of expression) 
(if (null? argexprs) 

(reverse argparms) 
(let ((val [aparm ((car argexprs) env)])) 

(unless (equiv-types? (car argtypes) (expr-type aparm)) 

(type-error (car argtypes) (expr-type aparm) 
11 in argument to iterator11

)) 

(do-args (cdr argexprs) 
(cons aparm argparms) 
(cdr argtypes))))]) 

(val [ival (iter env)]) 
(val [itype (expr-type ival)]) 

(val [rtype (structure-ref restype (iter-attributes itype))] 

[argtys (structure-ref argtypes (iter-attributes itype))]) 

(val [argparms (do-args args (empty-list expression) argtys)])) 

((EXPR (,,(iter-unseal ival) 

env)))) 

(lambda ([,var ,,rtype]) 
,(lambda ([e environment]) 

(let ((val [bexpr (body e)])) 

(unless (equiv-types? (expr-type bexpr) void-type) 

(error 11 FDR-EACH body type must be VOID 11
)) 

bexpr))) 
CDCQargparms)) 

(syntax EXPR (for-each [var NAME] [icall ITER-CALL] [body EXPR]) 

(lambda ([env environment]) 
(icall env var body))) 

8.4 Resource management 

By restricting the use of a data type to a special binding form, we can guarantee that 

proper initialization and finalization actions precede and follow its use in the body 

of the binding form. This restriction is particularly useful for a type representing 

a handle on a resource that must be explicitly put into a consistent state before 
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use and then released when no longer needed, e.g. file descriptors and cached disk­

resident structures. In this example, we define a simple example of such a managed 

resource, the type vrnspace. A value of type vmspace is an indexed collection 

of pages, each of a fixed size and consisting of integer-valued cells. Each cell is 

addressed by a (page, offset) pair. We assume the following definitions, eliding the 

details of their implementation with " ... ": 

(define 
(type [vmspace 

[handle 
... ] 
... ] ) ) 

(define 
(fun [acquire ([space vmspace] [page integer]) handle 

... ] 
[release ([hdl handle] [writeback? boolean]) void 

... ] 
[handle-fetch ([hdl handle] [idx integer]) integer 

... ] 

[handle-store ([hdl handle] [idx integer] [datum integer]) void 

... ] ) ) 

We are not concerned with how vrnspace values are created, but we assume 

that the storage for the pages is allocated on disk. (XL in fact has no disk access 

primitives, but we ask the reader to use his imagination.) The function acquire, 

given a vmspace and a page number, returns a handle value, representing a buffer 

initialized with the contents of the page. The release function frees the buffer 

for re-use, writing its possibly-altered contents out to disk if wri teback? is true. 

The functions handle-fetch and handle-store allow read and write access to the 

contents of the buffer. 
We require that the following inva1iants be maintained: 

• The handle argument to handle-fetch and handle-store must designate a 

properly initialized buffer, i.e. one returned from a call to acquire. 

• Every handle must eventually be released. Ideally, a handle should remain 

allocated to a page only while a series of closely-spaced accesses are being 

performed, in order to minimize total buffer usage (space) while avoiding 

excessive buffer management overhead (time). 

• If a buffer is modified, it must be written back out to disk before being released. 

We would like to enforce these constraints statically, without run-time overhead. 

Our strategy will be to conceal the above definitions, except for the type vrnspace it­

self, and make their functionality accessible only through new syntactic forms whose 
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syntax and static semantics imply the satisfaction of the constraints. The key idea 

is to introduce a new form of declaration, a handle declaration, which introduces a 

local name through which the page buffer may be accessed in a restricted way by 

the special forms fetch and store. This name does not designate a value, but a 

new kind of entity representing an initialized page buffer. It is not possible to refer 

to the buffer outside of the scope of the name, hence it is safe to release the buffer 

before exiting that scope. The user expresses his intention to write into the buffer 

at the time that the handle is declared. It is a static semantic error to use store 

with a handle that has not been declared (read-vri te). The following schemata 

illustrate the usage of these language constructs: 

(let ((handle handle space pageno (read-only))) 

(fetch handle offset) 
) 

(let ((handle handle space pageno (read-vri te))) 

(fetch handle offset) 

(store handle offset datum) 

... ) 

We begin our language extension with some auxiliary definitions. We first cap­

ture the description value associated with the type vmspace. Values of type 

handle-info represent the semantic attributes of a handle entity: a flag indicating 

whether the handle is writable, and the name of a variable that will actually hold 

the buffer at runtime. The entity type, a union type, must also be extended to 

include handles. 

(meta-define 
(val [vmspace-type ((TYPE vmspace) (current-environment))])) 

(meta-define 
(type [handle-info 

(structure-of [vritable? boolean] [bufname token])])) 

(meta-define 
(type [handle-entity (extend-union entity [handle handle-info])])) 

The auxiliary phylum ACCESS represents the access mode for the handle. Its 

semantic value is a boolean, true if the buffer is to be written. 
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(phylum ACCESS boolean) 

(syntax ACCESS (read-only) #f) 

(syntax ACCESS (read-write) #t) 

The handle declaration wraps its scope in a let which binds a newly-generated 

variable to the buffer returned for the specified space and page number by acquire. 

The body is closed in an environment in which the handle name is bound to a 

handle entity. The generated code releases the buffer after the body is evaluated, 

writing the page out to disk if the handle was declared for read-write access. 

(syntax DECL (handle [h NAME] [s EXPR] [p EXPR] [a ACCESS]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(let ((val [vmspace (s env)])) 

(unless (equiv-types? vmspace-type (expr-type vmspace)) 

(type-error vmspace-type (expr-type vmspace) 

"in handle declaration")) 

(let ((val [page (p env)])) 
(unless (equiv-types? integer-type (expr-type page)) 

(type-error integer-type (expr-type page) 
11 in handle declaration")) 

(let ((val [h-name (generate-token "HANDLE")]) 

(val [h-info (make-structure [writable? a] 
[bufname h-name])]) 

(val [h-entity (inject handle-entity handle h-info)]) 

(val [contour (add-binding h h-entity (empty-contour))]) 

(val [body-env (add-contour contour env)])) 

(lambda ([exp •expr]) 
((EXPR (let ((val [,h-name 

(acquire ,,vmspace ,,page)]) 

(val [%result 
,(close-expr exp body-env (list h-name))])) 

(release ,(name->•expr h-name) ,(boolean->•expr a)) 

%result)) 
denv)))))))) 

The fetch form just invokes handle-fetch on the buffer after checking the 

validity of its handle argument and rett-ieving the buffer variable name (bound by 

the expansion of the handle declaration) from its semantic attt-ibutes. The store 

form is nearly identical, but invokes handle-store and verifies that the handle was 

declared writable. 
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(syntax EXPR (fetch [h NAME] [i EXPR]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 

(unless (bound-in-environment? h env) 
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(error (string-append "Unbound handle name - " (token->string h)))) 

(let ((val [entity (binding h env)])) 

(unless (is? handle-entity handle entity) 

(error (string-append "Handle name required - " (token->string h)))) 

(let ((val [h-info (project handle-entity handle entity)]) 

(val [h-name (structure-ref bufname h-info)]) 

(val [index (i env)])) 

(unless (equiv-types? integer-type (expr-type index)) 

(type-error integer-type (expr-type index) "in FETCH index")) 

((EXPR (handle-fetch ,(name->•expr h-name) ,,index)) 

(merge-environments denv env (list h-name)))))))) 

(syntax EXPR (store [h NAME] [i EXPR] [d EXPR]) 

(let ((val [denv (definition-environment)])) 

(lambda ([env environment]) 
(unless (bound-in-environment? h env) 

(error (string-append "Unbound handle name - " (token->string h)))) 

(let ((val [entity (binding h env)])) 

(unless (is? handle-entity handle entity) 

(error (string-append "Handle name required - " (token->string h)))) 

(let ((val [h-info (project handle-entity handle entity)]) 

(val [h-name (structure-ref bufname h-info)]) 

(val [index (i env)])) 

(unless (equiv-types? integer-type (expr-type index)) 

(type-error integer-type (expr-type index) "in STORE index")) 

(let ((val [datum (d env)])) 

(unless (equiv-types? integer-type (expr-type datum)) 

(type-error integer-type (expr-type datum) "in STORE datum")) 

(unless (structure-ref vritable? h-info) 

(error "Attempt to STORE via read-only handle")) 

((EXPR (handle-store ,(name->•expr h-name) ,,index ,,datum)) 

(merge-environments denv env (list h-name))))))))) 

Many variations on this theme are possible. A very simple example, which 

would be useful if XL supported multi-threaded execution, would be a construct 

for protecting critical regions. Given the synchronization primitives P and V, we 

might implement the following transformation, where (tl) and (t2) are temporary 

variables: 

• ~ 
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(critical-region (semaphore) (body)) 

==> 
(let ((val C(tl) (semaphore)))) 

(P (tl)) 
(let ((val C(t2) (body)))) 

(V (tl)) 
t2)) 

8.5 Embedded languages 

The examples presented have all been extensions to the XL language. The mech­

anisms used, however, may be also be employed to implement translators for em­

bedded languages quite different from their XL host, provided, of course, that XL 

suffices for expressing the translated result. Extensions largely preserve the charac­

ter of the base language, as the immutable framework represented by the semantic 

value types of the predefined phyla must be respected by all extensions. Embedded 

languages, on the other hand, may do as they please. 

Interesting possibilities include: 

• A Prolog-like logic programming language that could interface smoothly with 

"evaluable predicates" written in the base language. 

• A "patch-panel" language for describing digital signal processing algorithms, 

such as music synthesis. 

• An embedded database query language. Note that the data model, including 

heterogeneous tuples, might be smoothly interfaced with the base language 

type system for convenient database access from application code. 

• Embedded parser and lexical analyzer generators. 

As XL is intended only as a vehicle to explore a novel approach to macro pro­

cessing, we do not claim that it is suitable for all of these proposals. What we 

hope to have demonstrated is that mechanisms such as we have illustrated could 

in principle be used in these ways when incorporated into an "industrial strength" 

language and its compiler. 

9 Remarks on the design of XL 

In the design of XL, various design choices had to be evaluated and tradeoff's made, 

some in the interest of technical merit, and others as concessions to the requirement 
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that the project be kept within a manageable scope. Here we pause to reflect on 

some of these choices, attempting to point out which were essential and which were 

incidental, with an eye toward identifying fruitful alternative choices that might 

serve as topics of further research. 

9.1 Choice of metalanguage 

XL serves as its own metalanguage. User-defined compile-time computations are 

described in the same language as run-time computations. This is quite appropri­

ate in the case of XL, as XL is well-suited for the symbolic processing involved 

in meta programming. Using the same language for both purposes minimizes the 

number of additional concepts that must be added to the language to support 

metaprogramming, and assures that the expressive power of the metalanguage is as 

great as that of the object language. Note that Lisp takes this approach as well. 

If we had chosen to use a more conventional object language, e.g. one similar 

to Pascal or C in its semantics, it would probably not have been satisfactory to use 

this same language as the metalanguage. Conventional imperative languages are not 

well-adapted to symbolic processing, and explicit storage management operations 

clutter up the code. Additionally, most conventional languages have insecurities, 

i.e. unchecked language rules, the violation of which can result in embarrassingly 

non-robust behavior such as core dumps. This behavior is not appropriate for 

a compiler, which should recover gracefully from all errors. (But note that it is 

possible for the compiler to go into an infinite loop in a metaprogram. There is 

not much we can do about this beyond providing adequate debugging facilities, and 

perhaps a timeout for unattended batch compilations.) 

There is no essential connection between the basic structure of the metalan­

guage and the object language it manipulates. We could provide a different set 

of meta-types and their operations specific to another object language (especially 

the quasiquotation operators for the object language phyla) and write metapro­

grams over that language. Thtis it would be possible to support a variety of object 

languages in an XL-like metaprogramming system using a common metalanguage. 

9.2 Syntactic framework 

The syntactic framework adopted for XL is a fully-parenthesized notation closely 

following that of Lisp. Such a notation allows easy extension without fear of in­

troducing ambiguity or undue parsing complexity. Furthermore, by requiring a 

keyword to be associated with each syntactic form, we can treat (keyword, phylum} 

pairs in much the same way as ordinary identifiers in that we need only guarantee 

that each such pair is uniquely defined at all points in the program following any 

• • 
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scoping discipline we wish to implement. "\:Vhile we have not chosen to exploit this 

fact, the XL syntactic framework can easily support syntax declarations with a local 

restricted scope, analogous to let declarations. 

It would be interesting to investigate richer syntactic frameworks, e.g. various 

subclasses of the context-free grammars. The difficulty with these is that alterations 

to a grammar intended to have local significance may have adverse and unexpected 

global effects, such as rendering the grammar ambiguous. Additionally, efficient 

parsing algorithms such as the LR(k) methods require grammars to be in a partic­

ular form, usually defined with respect to a parse table construction algorithm. The 

acceptable grammars, and more significantly, the kinds of acceptable local modi­

fications, are difficult to characterize in an intuitively appealing way. It appears 

necessary either to accept a broader class of grammars than is customarily used 

in programming language definition, or to adopt a significantly more restrictive 

syntactic framework than context-free grammars. 

9.3 Quasiquotation 

In XL, the internal structure of a quasiquotation is parsed at the same time as 

the quasiquotation itself, and is effectively expanded at read-time into an expres­

sion that will evaluate to the semantic value of the quasiquoted form. 10 Thus any 

syntactic errors will be detected as early as possible, when the quasiquotation is 

read, not when it is evaluated. In this way, we avoid the possibility of syntax errors 

detected during macro expansion. 

One consequence of this choice is that no semantic information, static or other­

wise, is present to guide the parse, thus the syntactic class expected of an unquoted 

form must be determined from surrounding context. It is a property of XL that 

the parser can always predict the expected syntactic class of a constituent without 

examining any of its symbols, modulo detection of an omitted &:null keyword and 

the syntactic coercions introduced by atom-syntax. In the latter case, an explicit 

conversion using one of the "(literal->•expr)" funct1ons is required. It would be 

possible (and desirable) to postpone the parsing of the quasiquotation until it is 

compiled (i.e. after it is read), but before execution. In this case, the types of 

the quasiquotation arguments might be used to reso~ve the expected syntactic class 

of the unquoted expressions, avoiding the need for the conversion operators while 

preserving the property that expansion-time syntax errors are not possible. Note 

that it would be necessary in this case to insure that each type is associated with 

10This is analogous to the treatment of quasiquotation ( "backquote") in Common Lisp, in which 

quasiquotations are expanded at read-time. Compare with Scheme, in which the backquote read­

macro simply expands into a quasiquote form, which is then expanded during the normal macro­

expansion phase. 
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at most one of the syntactic classes from among which we must distinguish. The 

present design would have to be altered, as the type token is associated with two 

syntactic classes coercible to EXPR, namely the atomic phyla NAME and TOKEN. 

That this more desirable approach was not taken is largely a historical accident, 

frozen early in the design before its consequences were appreciated. 

9.4 Suppression of syntax in the metalanguage 

In the design of XL, we chose to keep syntactic issues out of the metalanguage to 

the greatest extent possible. Thus keyword tables are hidden in the operation of 

XL parser and the primitive syntax extension commands. It is this choice that 

forces those commands to be primitive and non-extensible. To permit extension of 

the set of defining forms would require that we provide hooks giving user-defined 

metaprograms some form of access to the parser and its tables. 

The decision to deal with program fragments entirely in terms of their semantic 

values is crucial to the "flavor" of XL metaprogramming. From the user's point of 

view, there simply are no uninterpreted syntactic forms. Every form manipulated in 

a metaprogram is inseparably connected with its syntactic class and semantic value 

and, furthermore, the structure -of the form is not accessible except to the extent 

revealed by the semantic value. Compare the XL examples with Lisp macros in 

which the expander function traverses the expression to be expanded with structure 

accessors such as car, cdr, etc. 

There is, unfortunately, a severe negative consequence of our peculiar treatment 

of macro "expansion." Since the resulting semantic value gives us no hint of how it 

came into being, an erroneous macro definition can be exceedingly difficult to debug. 

Indeed, since we are not constrained to construct the expansion by instantiating 

quasiquotation templates, we are not even guaranteed that a semantically-equivalent 

base-language program text (i.e. the usual sense of macro expansion) exists at all! 

In principle, the situation is no worse than in ordinary object-level programming, 

particularly when programming extensively with higher-order functions. However, 

the debugging leverage provided by syntactic macro expansion regimes illustrates 

a significant area in which semantic macros fall uncomfortably short of current 

practice. 

9.5 Scope issues and modularity 

It is clear that some sort of module mechanism is needed in order to orgamze 

collections of language extensions and to encapsulate the abstractions they define. 

This issue has not been addressed in this work, as we have chosen to focus our 

attention elsewhere. It appears likely that, given the current syntactic framework, 

• ~ 
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a conventional module scheme could be adapted for this purpose by treating phylum 

names and (keyword, phylum) pairs in the same way as ordinary identifiers. 

9.6 Type system 

The type system of XL is unsophisticated compared to that of, say, ML [16]. This 

choice was made almost entirely for the sake of expedience, as type systems per Je, as 

opposed to statically-typed languages, were not the intended object of this research. 

In retrospect, an ML-style polymorphic type inferencer seems nearly as easy to 

construct, and would have made the ·language much easier to use. Furthermore, 

many XL operations are special forms only because they need to be polymorphic. 

If ordinary expressions could be given polymorphic types, these operations could 

have been imported directly from Scheme. Nonetheless, using the simpler type 

system did permit the definition of an interesting record type. Incorporation of 

types with named components into an ML-like type system is a tricky business, and 

no entirely satisfactory solution has been found. 11 

10 Implementation status 

A prototype implementation of XL has been written in Scheme. We used the R 3RS 

Scheme environment provided as a subset ofT [22], and imported a few facilities 

from T missing from R 3RS Scheme, such as macros. Each XL command is processed 

completely before the next command is read. Forms are read as S-expressions by 

the Scheme reader, and then analyzed to produce their semantic values. While 

in principle a parser could produce the semantic values directly without the inter­

mediate S-expression representation, it was convenient to use the existing Scheme 

reader. Evaluations and definitions are translated first into Scheme code, and then 

passed on to the underlying Scheme system for further processing. Since the dy­

namic semantics of XL are nearly identical to Scheme, this translation is trivial, 

thus the compiler is concerned nearly exclusively with the aspects of compilation 

peculiar to XL. The code consists of approximately 3000 lines divided among 14 

source files. The compiler is written in a style reminiscent of XL extensions. A 

version of phylum, syntax, and atom-syntax are provided as macro extensions to 

Scheme, and are used to define the built-in XL forms. The interfacing of user­

defined semantic values to those manipulated by the compiler is greatly simplified, 

11 Essentially, one must either admit the occasional necessity of using an explicit type declaration 

to resolve a typing ambiguity (as in Standard ML [16]), or introduce the concept of subtyping and 

type inclusion, which significantly increases the complexity of the tvoe inference algorithm. See [9] 

and [29] for examples of such extensions. 
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indeed made trivial, by the use of the same representations internally as are seen 

by the user. 

11 Comparison with related work 

This work was motivated primarily by a desire to adapt the macro mechanism of 

Lisp to statically-typed languages. The influence of Lisp should thus be clear, as 

has been elucidated previously. Here we summarize other notable research relevant 

to our program, and examine the similarities and contrasts between such work and 

our own. 

11.1 Extensible languages 

In the decade from 1965 to 1975, so-called "extensible languages" were a popu­

lar topic of investigation. Standish [26] counted 27 proposals for such languages. 

Solntseff and Yezerski [25] provide an excellent survey. Most extensible language 

proposals rely on some form of macro-processing, usually at the lexical or syntactic 

level. Of particular interest are syntax macros [3] [11], in which a syntactic type is 

specified for each macro argument and for the expanded result. In such a scheme, 

macro calls are syntactically indistinguishable from built-in forms. 

Nearly all of the proposals provide for limited expansion-time computation, such 

as arithmetic and conditional replacement. In most cases, however, the compile-time 

metalanguage is relatively weak compared to the base language. In his-seminal paper 

on definitional facilities [4], Cheatham proposes the use of an embedded syntax 

macro processor for extension purposes·, but restricts the "semantics" of definitions 

to an expansion string and a few built-in macro-time operations for manipulating 

tables (e.g. the symbol table). He dismisses more general semantic processing as 

infeasible. 
A radically different position is taken by Irons [8]. In describing the IMP lan­

guage, he claims that "nothing short of a general programming language" would 

be adequate to express the required translation-time processes. His scheme, while 

based on the translator generator model of Cheatham's proposal, provides for the 

use of the entire IMP language, an Algol-like language with list-processing features, 

for expressing the semantics of definitions. He states that "the semantic part of 

an extension is in fact not a macro shell but a computation which is evaluated as 

a part of the translation process." Here we find a clear statement of the view of 

macro-processing taken in Lisp and XL. Unfortunately, IMP's realization of this 

insight is defective. Despite the provision of list-processing facilities, including pat­

tern matching and substitution primitives, UvlP is an imperative language in the 
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Algol style. Semantic attributes (e.g. types) are communicated between definition 

instances in global variables, with semantic processing occurring at fixed times dur­

ing multiple parse tree traversals in a fixed order. Multiple semantic actions may 

be specified, each labelled with a number indicating the time (traversal number) at 

which it is to be executed. In the resulting style, semantic actions cooperate harmo­

niously only by careful adherence to systemwide programming conventions. 12 The 

interface between cooperating definitions is completely unconstrained, and there is 

no guarantee of commonality in the behavior of semantic actions of multiple defini­

tions belonging to the same syntactic class (which should be, on syntactic grounds, 

interchangeable). 

Our approach differs from that of Irons mainly in that we use a typed functional 

metalanguage, and replace imperative semantic actions with functional semantic 

values. By extending the type discipline to these values in such a way that each 

syntactic class is associated with a single semantic value type, we guarantee that 

every definition belonging to a given syntactic class will conform to a common 

interface to the extent that can be captured in the type. While the type discipline 

cannot assure us that semantic values are defined with the meanings intended, 

it does provide the means by which abstraction barriers can be enforced by the 

compiler. In XL, we need not worry that a correct definition will be rendered 

erroneous by a change to an apparently unrelated one. A further difference can 

be found in our treatment of data types. We provide a rich set of compile-time 

operations on type descriptors, by which complex structured types can be expressed. 

Iron's type system is rather simple, modelled on that of Algol-60. Although it would 

be possible to formulate complex type descriptions in terms of IMP list structures, 

it is not clear that such descriptions could be made accessible to the existing base 

language type system. In contrast, our system provides a "hook" into the underlying 

type system, so that type extensions function as built-in types with respect to the 

built-in operations. 

11.2 Semantics-directed compiler generation 

There have been a number of attempts to generate compilers from semantic spec­

ifications in the denotational style. Early systems merely expanded the program 

into a lambda-calculus expression representing its denotation, which was then ei­

ther directly interpreted, as in Mosses' SIS [18], or compiled into SECD machine 

code, as in Paulson's compiler generator [19}. No distinction was made between 

12Witness the example in [8), page 35, 2nd column. Here a convention is described whereby an 

expression can determine whether it is being used to the left or the right of an assignment, and can 

adjust its behavior accordingly. 

• I 



COMPARISON WITH RELATED WORJ( 75 

static and dynamic semantics in the language specification, though a compile-time 

beta-reducer could signal static errors before execution time. 

Lee and Pleban have taken a somewhat different approach in MESS [12] [13] 

[20]. They factor the semantic specification into two parts, a macrosemantics, 

which makes no reference to the run-time model (e.g. details such as whether stores 

or continuations are used), and a microsemantics, which supplies this model. The 

static semantics are captured entirely in the macrosemantics, whereas the microse­

mantics specifies a language, comparable to theIR in a conventional compiler, into 

which programs are translated. By replacing the microsemantic specification with 

an actual code generator, a realistic compiler may be generated. 13 In practice, the 

macrosemantics metalanguage serves as a high-level notation for writing directly 

executable specifications of compiler front-ends. 

Unlike our system, MESS is an off-line compiler generation system, not an exten­

sible compiler. Furthermore, our target language is the source language itself, not 

an IR as represented by the microsemantics in MESS. Nonetheless, our approach 

was influenced by the observation that in MESS the techniques of denotational se­

mantics, applied to static semantic analysis only, could directly yield an acceptable 

implementation. In XL, we make no pretense that language extensions are declar­

ative specifications, but the purely functional style of denotational definitions and 

the notion of higher-order semantic domains contribute much toward the character 

of XL metaprogramming. 

11.3 Syntactic clo~ures 

In [2], Bawden and Rees present a proposed solution to the scoping problems as­

sociated with Lisp macros, including the inadvertant capture of free identifiers in 

macro arguments by variables bound locally in the expansion, and assuring the clo­

sure of the macro expansion in the context of the macro definition. Our treatment 

of partially-closed expressions, e.g. those produced by close-expr, is borrowed 

directly from this paper, adapted only to account for the fact that we deal with 

semantic values instead of uninterpreted S-expressions. One advantage of our for­

mulation is that a distinguished "syntactic closure" type is not needed, as we can 

represent all expressions uniformly as ordinary functions. Bawden and Rees leave 

open the question of an appropriate "pattern matching" language for specifying the 

syntax of macro definitions. Our syntax declarations might be adapted to this pur­

pose, with the removal of static typing to accommodate the dynamic type discipline 

of Lisp. 

13The purist may object, we believe with justification, that the claim to being "semantics directed" 

is lost when an ad-hoc code generator is added in this way, though the work of Appel [1] might be 

applied to make the derivation of the code generator somewhat better grounded in the theory. 
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11.4 Reflective programming 

Bnan Smith introduced the idea of reflective programming in [24]. The idea has 

been further explored by Friedman and Wand in [6] and [30]. In a reflective pro­

gramming language, code appearing textually at the object level can be "lifted" 

into the context of the interpreter, effectively adding new code. In reality, that 

interpreter need not be the "real" one, but the illusion is maintained that the user 

program is interpreted by a metacircular interpreter (i.e. written in the same lan­

guage it interprets) that can be so extended. A crucial idea in Smith's formulation 

(but see (6]) is the "reflective tower", a conceptually infinite tower of metacircular 

interpreters, each interpreting the interpreter below, or, in the case of the lower­

most one, the user's program. Given the reflective tower, code that has already 

been reflected up one level can reflect again to the level above, and so on as needed. 

At each level, the reflected code has access to an effective model of the computation 

taking place one level below. Furthermore, the model is "causally connected" with 

that computation in that changes made to the model are immediately reflected in 

the actual state of the computation. In Smith's language, 3-Lisp, the model pro­

vides access to both the (dynamic) environment and the continuation. Constructs 

that must be special forms in Lisp such as lambda, if, and catch, are definable as 

reflective procedures in 3:..Lisp. 

Friedman and Wand observed in [6], an exploration of a simpler, "towerless" 

form of reflection, that macro facilities constitute a form of compile-time reflection, 

but failed to elab<?rate further on this point. Historically, their insight motivated 

the early work on XL; however, we abandoned the analogy with Smith's work early 

in the design when it became unclear how to develop the analogy into a satisfactory 

definitional mechanism" We thus took a more conventional source-to-source trans­

formation approach, in which a macro expansion replaces the macro call, as source 

code, rather than implementing the macro call, as object code in some underlying 

implementation language. We believe that the latter approach is what would be de­

manded by a faithful adaptation of run-time reflection to an analogous compile-time 

variant. 

We conjecture that a notion analogous to the reflective tower of interpreters 

could be constructed using compilers instead. Such an approach would allow us 

to treat our semantic macros as true compiling transformations, translating into 

an object language distinct from the source language, though isomorphic to it. 

Semantic values to be incorporated in a macro expansion (i.e. the semantic value of 

the macro call) would belong to the object language. To create the semantic value 

of, say, an expression, we would have to provide both a (dynamic-) semantically 

equivalent expression in the object language and a type attribute representing the 

interpretation we wish to give it at the source level. 
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Since every source expression would be fully translated into an expression in 

a distinct language, the source expression would never inherit any static semantic 

attributes from its expansion. Fmthermore, the namespaces of the source pro­

gram and the expansion would be completely disjoint, avoiding the need to care­

fully manage the environment with respect to which the expansion is closed, e.g. 

definition-environment and the partial closure operators would no longer be 

needed. Note that this situation is the usual case in a compiler, and nothing odd 

would be going on at all if not for the use of an object language isomorphic to the 

source language. In this case, there is no semantic "lowering" during compilation, 

and we must imagine the same translation process applied to the object program 

as well, and so on ad infinitum. Thus we imagine an infinite tower of compilers in 

which each compiler translates the output of the compiler below it into a program 

in essentially the same language. The reflection primitives would "add lines" to 

the compiler that processes them analogous to reflection in the 3-Lisp interpreter. 

At some level, as we ascend the tower, we will presumably arrive at some level be­

yond which the program we are compiling does not reflect, as to require unbounded 

reflection is an error analogous to unbounded recursion. Above this level, all the 

compilers are compiling the same language (more correctly, isomorphic languages) 

so we can recognize this condition dynamically and close off the potential infinite 

regress, appealing to the primitive implementation of the base language. This is 

precisely the manner in which Smith's interpreter works. 

Suffice it to say that we are not claiming (necessarily) that such macros would 

be any easier to write or prettier to look at, but that the translation model for ex­

tensions of existing phyla would more closely resemble that of embedded languages. 

We find the need for the partial closure operations aesthetically unsatisfying, feeling 

that it is cleaner to rigorously maintain an "implements" relation between levels in 

the sense that quasiquotations should represent phrases in the implementation lan­

guage, not the source language. To maintain this view uniformly, while retaining a 

language isomorphic to the source language as the target, requires us to imagine that 

the built-in forms are also being compiled in this way, though the implementation 

mapping is trivial. 

12 Future research 

As it stands, the XL definitional facility makes it possible to define significant ex­

tensions of the same degree of generality per;missible by Lisp, but with full static 

semantic analysis in terms of the same model used by the built-in constructs. Fur­

thermore, the mechanisms are provided whereby embedded languages (i.e. systems 

of extensions loosely coupled to the base language) can implement completely arbi-
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trary compile-time processing. 

Unfortunately, the price to be paid is difficulty in use. While it is true that 

the major examples in this paper are of a kind likely to be written by users of 

considerable sophistication (e.g an expert systems programmer or a programming 

group's "toolsmith"), the mechanisms of XL make even simple definitions more 

difficult than they should be. The main culprit is the treatment of environments. 

Facilities are provided for assuring that every expression is closed in an appropriate 

environment, but they constitute a low-level "toolkit" providing little guidance for 

their use. Indeed, the Lisp experience shows that programmers are often sloppy 

with macro closure issues, relying on the choice of obscure names in preference to 

the reliable but more verbose technique of using system-generated globally unique 

names ("gensyms"). The most severe obstacle to the practical use of an XL-style 

definitional facility appears to be this clumsy treatment of closure. A completely 

adequate solution would make macro closure completely automatic, with no more 

thought required of the programmer than that required by the ordinary lexical 

scope rules applying to functions, We do not believe that syntactic closures, either 

as proposed in [2] for Scheme or as adapted by us for XL, represent an adequate 

solution for either language. 

XL has chosen to treat environments as part of static semantics, following the 

traditional treatment in compilers (e.g. the symbol table), and in doing so has had 

to treat the "meaning" of most syntactic forms, as represented by the semantic 

value, as a function of the surrounding environment. However, important semantic 

properties, such as type, are not well-defined until this environmental dependence 

has been removed. While a departure from most current practice, it might be fruitful 

to explore an approach in which naming is subsumed into the syntactic component 

of the language, and in which names represent purely structural references to the 

defining forms as syntactic instances of declarations. Some support for this approach 

is given by the observation that all scoping disciplines definable in terms of the 

XL primitives reduce to those expressable by a purely syntactic macro expansion 

modulo variable renaming and restrictions on variable visibility. 

While we have claimed that the definitional facilities of XL can be used to en­

capsulate data and control abstractions, we have not provided the visibility control 

mechanisms that would be needed to enforce the integrity of these abstractions. 

Ideally, we would like to be able to build libraries of useful definitions and import 

them freely as needed without concern for their internals. The presence of syntac­

tic extensions, beyond the definition of new names, presents problems that deserve 

further investigation. 
A richer type system, supporting polymorphism, would contribute much to the 

usability of the language. An ML-style type inference system would go a long 

way toward eliminating the notational clutter due to explicit type declarations for 
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function arguments and results. There does not appear to be any problem in prin­

ciple in making this change, but it would require a complete reformulation of the 

compile-time type-checking primitives. 

A less restrictive syntactic framework would ideally be preferred to the one 

currently adopted, yet abandoning the uniform, fully-parenthesized notation would 

complicate any scheme for program modularity, as well as introducing a new level 

of complexity into the parser. We believe that the choice to stay within the Lisp 

experience on this point has served us well in this project. 

13 Conclusions 

We believe that we have demonstrated that a macro-like definitional mechanism 

can be incorporated into a statically-typed language in a manner which respects the 

integrity of the base language while permitting definitions a substantial degree of 

access to static semantic attributes not normally accessible. One of the simplest but 

most important consequences of this power is _that our macros can report semantic 

errors in terms of the macro call, not its expansion. Our definitions, while consisting 

of program extensions to the compiler itself, cannot compromise its type-correctness. 

Furthermore, extensions are compartmentalized in such a way that the translation 

of instances of correctly-written extensions (as well as of the built-in constructs) 

cannot be affected in a catastrophic manner by erroneous definitions elsewhere 

in the program. The possible interactions between distinct definitions are tightly 

constrained and intellectually manageable. Our examples illustrate the value of 

macro definitions as an abstraction mechanism, and how semantic attributes can 

be exploited to enforce useful constraints, such as restricting the macro to arguments 

of certain types. On the negative side, XL programs are much too verbose, and the 

"cure" proposed for the traditional macro scoping problems seems almost worse 

than the disease. We have provided a few directions for future research which 

promise to ameliorate this deficiency. 

References 

[1] Andrew W. Appel. Semantics-directed code generation. In Conference Record 

of the Twelfth Annual A CM Symposium on Principles of Programmin!! Lan­

guages, pages 315-324, 1985. 

[2] Alan Bawden and Jonathan Rees. Syntactic closures. In Proceedings of the 

1988 A CM Conference on Lisp and Functional Programming, pages 86-95, 

1988. 



80 SEMANTICALLY-SENSITNE MACROPROCESSING 

[3] W. R. Campbell. A compiler definitl.on facility based on the syntactic macro. 

Computer Journal, 21(1):35-41, 1975. 

[4] T. E. Cheatham, Jr. The introduction of definitional facilities into higher 

level programming languages. In Proceedings of the 1966 Fall Joint Computer 

Conference, pages 623-637, 1966. 

[5] David R. Cheriton and Michael E. Wolf. Extensions for multi:-module records in 

conventional programming languages. In Conference Record of the Fourteenth 

Annual ACM Symposium on Principles of Programming Languages, pages 296-

306, 1987. 

[6] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without meta­

physics. In Proceedings of the 1984 A CM Conference on Lisp and Functional 

Programming, pages 348-355, 1984. 

[7] David K. Gifford et al. FX-87 reference manual. Technical Report MIT LCS 

TR-409, Laboratory for Computer Science, Mass.achusetts Institute of Tech­

nology, September 1987. 

[8] Edgar T. Irons. Experience with an extensible language. CACM, 13(1 ):31-40, 

January 1970. 

[9] Lalita Jategaonkar and John Mitchell. ML with extended pattern matching and 

subtypes. In Proceedings of the 1988 A CM Conference on Lisp and Functional 

Programming, pages 198-211, 1988. 

[10] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Bell Laboratories, 

Murray Hill, New Jersey. Reprinted in Unix Programmer's Manual: Supple­

mentary Documents, distributed with 4.2BSD, 1984. 

[11] B. M. Leavenworth. Syntax macros and extended translation. CACM, 9:790-

793, 1966. 

[12] Peter Lee and Uwe Pleban. On the use of LISP in implementing denotational 

semantics: A progress report. In Proceedings of the 1986 A CM Conference on 

Lisp and Functional Programming, pages 233-248, 1986. 

[13] Peter Lee and U we Pleban. A realistic compiler generator based on high-level 

semantics: Another progress report. In Conference Record of the Fourteenth 

Annual A CM Symposium on Principles of Programming Languages, pages 284-

295, 1987. 



REFERENCES 81 

[14] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator. Bell Labo­

ratories, Murray Hill, New Jersey. Reprinted in Unix Programmer's Manual: 

Supplementary Documents, distributed with 4.2BSD, 1984. 

[15] Barbara Liskov et al. CL U Reference Manual, volume 114 of Lecture Notes in 

Computer Science. Springer-Verlag, 1981. 

[16] Robin Milner. The Standard ML core language. Polymorphism, 2(2), October 

1985. An earlier version of this paper appeared in Conference Record of the 

1984 A CM Symposium on Lisp and Functional Programming. 

[17] David Moon, Richard Stallman, and Daniel Weinreb. LISP Machine Manual. 

MIT Artificial Intelligence Lab, fifth edition, January 1983. 

[18] P. Mosses. SIS - Semantics Implementation System. Technical Report DAIMI 

MD-30, Computer Science Department, Aarhus University, August 1979. 

[19] Lawrence Paulson. A semantics-directed compiler generator. In Conference 

Record of the Ninth Annual A CM Symposium on Principles of Programming 

Languages, pages 224-233, 1982. 

[20] Uwe F. Pleban and Peter Lee. An automatically generated, realistic compiler 

for an imperative programming language. In Proceedings of the SIGP LAN 

'88 Conference on Programming Language Design and Implementation, pages 

222-232, 1988. 

[21] Jonathan Rees and vVilliam Clinger (editors). Revised 3 report on the algorith­

mic language Scheme. SIGPLAN Notices, 21(12):37-79, December 1986. 

[22] Jonathan A. Rees, Norman I. Adams, and James R. Meehan. The T Manual. 

Computer Science Department, Yale University, fourth edition, January 1984. 

[23] Mary Shaw, editor. Alphard: Form and Content. Springer-Verlag, New York, 

1981. 

[24] Brian Cantwell Smith. Reflection and semantics in Lisp. In Conference Record 

of the Eleventh Annual ACM Symposium on Principles of Programming Lan­

guages, pages 23-35, 1984. 

[25] N. Solntseff and A. Yezerski. A Sur·vey of Extensible Programming Lan­

guages, volume 7 of Annual Re·view in Automatic Programming, pages 267-307. 

Pergammon Press, 1974. 



82 SE!IiANTICALLY-SENSITIVE MACROPROCESSING 

[26] Thomas A. Standish. Extensibility in programming language design. In Pro­

ceedings of the National Computer Conference, pages 287-290, Montvale, New 

Jersey, 1975. AFIPS Press. 

[27] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984. 

[28] Mitchell Wand. Complete type inference for simple objects. In 1987 IEEE 

Symposium on Logic in Computer Science, pages 37-44. IEEE Computer So­

ciety Press, 1987. 

[29] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: 

A non-reflective description of the reflective tower. In Proceedings of the 1986 

A CM Conference on Lisp and Functional Programming, pages 298-307, 1986. 


